Higher Order Fibonacci Sequence and Series by Generalized Higher Order Variable Co-Efficient Difference Operator

Sandra Pinelas¹, Mohan B² and Britto Antony Xavier G³*
¹Departamento de Ciências Exatas e Naturais Av. Conde Castro Guimaraes 2720-113, Amadora, Portugal.
²,³Department of Mathematics, Sacred Heart College, Tirupattur, Vellore District- 635 601, TamilNadu, India.

Abstract

In this paper, we introduce generalized \(m^{th} \) order difference operator with variable co-efficient and its inverse by which we obtain higher Fibonacci sequence and its sum. Some theorems and interesting results on the sum of the terms of higher Fibonacci sequence with variable co-efficient are derived. Suitable examples are provided to illustrate our results.

Key words: Generalized difference operator, Variable co-efficient, Fibonacci sequence, Closed form solution, Fibonacci summation.

1. Introduction

In 1984, Jerzy Popenda [5] introduced a particular type of difference operator on \(u(k) \) as \(\Delta_{\alpha} u(k) = u(k + 1) - \alpha u(k) \). In 1989, Miller and Rose [8] introduced the discrete analogue of the Riemann-Liouville fractional derivative and its inverse \(\Delta^{-\nu}_{h} f(t) \) ([1, 4]). In 2011, M.Maria Susai Manuel, et.al, [7] extended the operator \(\Delta_{\alpha} \) to generalized \(\alpha- \)difference operator as \(\Delta_{\alpha} v(k) = v(k + \ell) - \alpha v(k) \) for the real valued function \(v(k) \). In 2014, G.Britto Antony Xavier, et.al, [2] introduced \(q- \)difference operator as \(\Delta_{q} v(k) = v(qk) - v(k), \ q \in (0, \infty) \) and obtained finite series solution to the corresponding generalized \(q- \)difference equation \(\Delta_{q} v(k) = u(k) \). With this background, in this paper, we obtain advanced Fibonacci sequence and its sum by introducing \(n^{th} \)-order difference operator with variable co-efficients.
2. Higher order Fibonacci sequence and series by Generalized m-th order variable co-efficient difference equation

Fibonacci and Lucas numbers cover a wide range of interest in modern mathematics as they appear in the comprehensive works of Koshy [6] and Vajda [10]. The \(k\)-Fibonacci sequence introduced by Falcon and Plaza [3] depends only on one integer parameter \(k\) and is defined as

\[
F_{k,0} = 0, \quad F_{k,1} = 1 \quad \text{and} \quad F_{k,n+1} = kF_{k,n} + F_{k,n-1}, \quad \text{where} \quad n \geq 1, \ k \geq 1.
\]

In particular, if \(k = 2\), the Pell sequence is obtained as

\[
P_{0} = 0, \quad P_{1} = 1 \quad \text{and} \quad P_{n+1} = 2P_{n} + P_{n-1} \quad \text{for} \quad n \geq 1.
\]

Here we introduce \(m\)-th-order generalized difference operator with variable co-efficients

\[
\Delta_{\lambda_{\alpha}(\ell)} v(k) = v(k) - \sum_{i=1}^{m} \alpha_{i} k^{r_{i}} v(k - i\ell), \quad \lambda_{\alpha}(\ell) = (\alpha_{1} k^{r_{1}}, \alpha_{2} k^{r_{2}}, \ldots, \alpha_{m} k^{r_{m}})
\]

which generates higher order Fibonacci sequence and its sum.

Definition 2.1 For \(k \in [0, \infty)\), higher order Fibonacci sequence is defined as

\[
F_{0} = 1, \quad F_{1} = \alpha_{1} k^{r_{1}}, \quad F_{n} = \alpha_{1} [k - (n - 1)\ell]^{r_{1}} F_{n-1} + \alpha_{2} [k - (n - 2)\ell]^{r_{2}} F_{n-2}, \quad n \geq 2 \quad (1)
\]

If \(\alpha_{1} = \alpha_{2} = r_{1} = r_{2} = \ell = 1\) in (1), we have the well known Fibonacci sequence.

Example 2.2 (i) Taking \(k = 7, \alpha_{1} = 10, \alpha_{2} = 7, r_{1} = 3\) and \(r_{2} = 2\) in (1), we get a Fibonacci sequence \(\{1, 490, 193207, 12173560, \ldots\}\).

(ii) When \(k = 9, \alpha_{1} = 0.8, \alpha_{2} = 0.3, r_{1} = 2\) and \(r_{2} = 4\) in (1), we have a Fibonacci sequence \(\{1, 583.2, 238903.02, 65566186.13, \ldots\}\).

Similarly, one can obtain higher order Fibonacci sequences corresponding to each \(\lambda_{\alpha}(\ell) = (\alpha_{1} k^{r_{1}}, \alpha_{1} k^{r_{2}}, \ldots, \alpha_{m} k^{r_{m}}) \in \mathbb{R}^{2}\).

Definition 2.3 A generalized \(m\)-th order difference operator with variable co-efficients on \(v(k)\), denoted as \(\Delta_{\lambda_{\alpha}(\ell)} v(k)\), where \(\lambda_{\alpha}(\ell) = (\alpha_{1} k^{r_{1}}, \alpha_{1} k^{r_{2}}, \ldots, \alpha_{m} k^{r_{m}})\) is defined as

\[
\Delta_{\lambda_{\alpha}(\ell)} v(k) = v(k) - \sum_{i=1}^{m} \alpha_{i} k^{r_{i}} v(k - i\ell), \quad k, \ell \in [0, \infty) \quad (2)
\]

and its inverse is defined as below;

\[
\text{if} \quad \Delta_{\lambda_{\alpha}(\ell)} v(k) = u(k), \quad \text{then we write} \quad v(k) = \Delta_{\lambda_{\alpha}(\ell)}^{-1} u(k). \quad (3)
\]
Lemma 2.4 Let \(v(k) \) be a function of \(k \in (-\infty, \infty) \). Then we obtain
\[
-1 \Delta_{\lambda_\alpha(\ell)} a^s k \left[1 - \sum_{i=1}^{m} \frac{\alpha_i k^{r_i}}{a^{is\ell}} \right] = a^s. \tag{4}
\]

Proof: Taking \(v(k) = a^s k \) in (2), we obtain
\[
\Delta_{\lambda_\alpha(\ell)} a^s k = a^s \left[1 - \sum_{i=1}^{m} \frac{\alpha_i k^{r_i}}{a^{is\ell}} \right]. \tag{3}
\]
Now (4) follows from (3).

Corollary 2.5 If \(m = 3 \) in lemma (2.4), then we obtained
\[
-1 \Delta_{\lambda_\alpha(\ell)} a^s k \left[1 - \sum_{i=1}^{3} \frac{\alpha_i k^{r_i}}{a^{is\ell}} \right] = a^s. \tag{5}
\]

Proof: Taking \(u(k) = a^s k \left[1 - \sum_{i=1}^{3} \frac{\alpha_i k^{r_i}}{a^{is\ell}} \right] \) in (2), we have
\[
\Delta_{\lambda_\alpha(\ell)} a^s k = a^s \left[1 - \sum_{i=1}^{3} \frac{\alpha_i k^{r_i}}{a^{is\ell}} \right]. \tag{3}
\]
Now (5) follows from (3).

Corollary 2.6 Let \(e^{-sk} \) be a function of \(k \in (-\infty, \infty) \). Then we have
\[
-1 \Delta_{\lambda_\alpha(\ell)} e^{-sk} k \left[1 - \sum_{i=1}^{m} \alpha_i k^{r_i} e^{is\ell} \right] = e^{-sk}. \tag{6}
\]

Proof: The proof follows by assuming \(a = e^{-1} \) in (4).

Corollary 2.7 Let \(e^{-sk} \) be a function of \(k \in (-\infty, \infty) \). Then we have
\[
-1 \Delta_{\lambda_\alpha(\ell)} e^{-sk} k \left[1 - \sum_{i=1}^{3} \alpha_i k^{r_i} e^{is\ell} \right] = e^{-sk}. \tag{7}
\]

Proof: The proof follows by assuming \(m = 3 \) in corollary (2.6).

Corollary 2.8 Let \(e^{sk} \) be a function of \(k \in (-\infty, \infty) \), then we obtained
\[
-1 \Delta_{\lambda_\alpha(\ell)} e^{sk} k \left[1 - \sum_{i=1}^{m} \alpha_i k^{r_i} e^{is\ell} \right] = e^{sk}. \tag{8}
\]
Proof: The proof follows by taking $a = e^{sk}$ in lemma (2.4).

Corollary 2.9 Let e^{sk} be a function of $k \in (-\infty, \infty)$, then we obtained

$$\frac{-1}{\lambda_n(\ell)} e^{sk} \left[1 - \sum_{i=1}^{3} \frac{\alpha_i k_i^r}{e^{is\ell}} \right] = e^{sk}. \quad (9)$$

Proof: The proof follows by taking $m = 3$ in corollary (2.8).

Corollary 2.10 Let $\log k$ be a function of $k > 2\ell$. Then we have

$$\frac{-1}{\lambda_n(\ell)} \left[\log k - \sum_{i=1}^{m} \alpha_i k_i^r \log(k - i\ell) \right] = \log k. \quad (10)$$

Proof: Taking $v(k) = \log k$ in (2), we obtained

$$\Delta \frac{\lambda_n(\ell)}{\lambda_n(\ell)} \log k = \log k - \sum_{i=1}^{m} \alpha_i k_i^r \log(k - i\ell).$$

Now (10) follows from (3).

Corollary 2.11 Let $\log k$ be a function of $k > 2\ell$. Then we have

$$\frac{-1}{\lambda_n(\ell)} \left[\log k - \sum_{i=1}^{3} \alpha_i k_i^r \log(k - i\ell) \right] = \log k. \quad (11)$$

Proof: The proof follows by taking $m = 3$ in corollary (2.10).

Theorem 2.12 If $v(k) = \Delta^{\lambda_n(\ell)} u(k)$, $F_0 = 1$, $F_1 = F_0 \alpha_1 k_1^{r_1}$ and

$$F_{n+1} = \sum_{i=0}^{n} F_{n-i} \alpha_{i+1} [k - (n-i)\ell]^{r_{i+1}}, \text{ then } \sum_{i=0}^{n} F_i u(k-i\ell) = v(k) - F_{n+1} u(k-(n+1)\ell) - \sum_{i=0}^{n} F_{n-i} \alpha_{i+2} [k - (n-i)\ell]^{r_{i+2}} v(k-(n+2)\ell) - \sum_{i=0}^{n-1} F_{n-i} \alpha_{i+3} [k - (n-i)\ell]^{r_{i+3}} v(k-(n+3)\ell) + \ldots + F_n \alpha_m (k-n\ell)^{r_m} v(k-(n+m)\ell). \quad (12)$$

Replacing

where

Proof: From (2) and (3), we arrive

\[v(k) = u(k) + \alpha_1 k^r_1 v(k - \ell) + \alpha_2 k^r_2 v(k - 2\ell) + \ldots + \alpha_m k^r_m v(k - m\ell). \quad (13) \]

Replacing \(k \) by \(k - \ell \) and then substituting the value of \(v(k - \ell) \) in (13), we get

\[v(k) = u(k) + F_1 u(k - \ell) + [F_1 \alpha_1 (k - \ell)^r_1 + \alpha_2 k^r_2] v(k - 2\ell) + \ldots + \]

\[[F_1 \alpha_{m-1} (k - \ell)^{r_{m-1}} + \alpha_m k^r_m] v(k - m\ell) + F_1 \alpha_m (k - \ell)^{r_m} v(k - (m+1)\ell) \quad (14) \]

which gives

\[v(k) = u(k) + F_1 u(k - \ell) + F_2 v(k - 2\ell) + [F_1 \alpha_2 (k - \ell)^r_2 + \alpha_3 k^r_3] v(k - 3\ell) + \ldots + \]

\[[F_1 \alpha_{m-1} (k - \ell)^{r_{m-1}} + \alpha_m k^r_m] v(k - m\ell) + F_1 \alpha_m (k - \ell)^{r_m} v(k - (m+1)\ell), \quad (15) \]

where \(F_0, F_1 \) and \(F_2 \) are given in (1).

Replacing \(k \) by \(k - 2\ell \) in (13) and then substituting \(v(k - 2\ell) \) in (15), we obtain

\[v(k) = \sum_{i=0}^{3} F_i u(k - i\ell) + \ldots + F_2 \alpha_m (k - 2\ell)^{r_m} v(k - (m+2)\ell), \]

where \(F_3 \) is given in (1). Repeating this process again and again, we get (12).

Corollary 2.13 If \(v(k) = \frac{u(k)}{\lambda_\alpha(k)} \), \(F_0 = 1, F_1 = F_0 \alpha_1 k^r_1 \) and

\[F_{n+1} = \sum_{i=0}^{n} F_{n-i} \alpha_{i+1} [k - (n+i)\ell]^{r_{i+1}}, \text{ then } \sum_{i=0}^{n} F_i u(k - i\ell) = v(k) - F_{n+1} v(k - (n+1)\ell) - \]

\[\sum_{i=0}^{1} F_{n-i} \alpha_{i+2} [k - (n+i)\ell]^{r_{i+2}} v(k - (n+2)\ell) + F_n \alpha_3 (k - n\ell)^{r_3} v(k - (n+3)\ell). \quad (16) \]

Proof: The proof follows by taking \(m = 3 \) in Theorem (2.12).

Corollary 2.14 If \(v(k) \) is a closed form solution of the \(m \)th order generalized difference equation

\[\frac{\Delta}{\lambda_\alpha(k)} v(k) = a^k \left[1 - \frac{\alpha_1 k^{r_1}}{a^{s_1}} - \frac{\alpha_2 k^{r_2}}{a^{s_2}} - \frac{\alpha_3 k^{r_3}}{a^{s_3}} \right], \]

then we obtain

\[\text{brittoshc@gmail.com} \quad \text{Page 116 of 122} \]
\[a^k \left[1 - \frac{F_{n+1}}{a^{s(n+1)\ell}} - \sum_{i=0}^{n} \frac{F_{n-i}\alpha_{i+2}[k-(n-i)\ell]r_{i+2}^n - F_n\alpha_3(k-n\ell)r_3^n}{a^{s(n+2)\ell}} \right] \]
\[= \sum_{i=0}^{n} F_i a^{s(k-i\ell)} \left[1 - \frac{\alpha_1(k-i\ell)^{r_1}}{a^{s\ell}} - \frac{\alpha_2(k-i\ell)^{r_2}}{a^{2s\ell}} - \frac{\alpha_3(k-i\ell)^{r_3}}{a^{3s\ell}} \right]. \] (17)

Proof: The proof of (17) follows by taking \(v(k) = a^k \) and applying (16) in (16).

The following example is an verification of corollary 2.14

Example 2.15 Taking \(k = 9, \ell = 0.3, n = 1, a = 5, \alpha_1 = 0.2, \alpha_2 = 0.3, \alpha_3 = 0.4, r_1 = 1 \) and \(r_2 = 3, r_3 = 4 \) in (17), we get
\[5^9 - F_25^{-2} - 3F_25^{-5} = \sum_{i=0}^{F_i5^{9-0.3i}} \left[1 - \frac{2(7-3i)^{i}}{5^3} - \frac{3(7-3i)^{i}}{5^6} \right] = 78077.15136, \]
where \(F_0 = 1, F_1 = 14, F_2 = 259, F_3 = 1190. \)

Corollary 2.16 Let \(e^{-sk} \) be a function of \(k \in (-\infty, \infty) \). Then
\[e^{-sk} \left[1 - \frac{F_{n+1}e^{s(n+1)\ell}}{a^{s(n+1)\ell}} - \sum_{i=0}^{n} F_{n-i}\alpha_{i+2}[k-(n-i)\ell]r_{i+2}^n e^{s(n+2)\ell} + F_n\alpha_3(k-n\ell)r_3^n e^{s(n+3)\ell} \right] \]
\[= \sum_{i=0}^{n} F_i e^{-s(k-i\ell)} \left[1 - \alpha_1(k-i\ell)^{r_1} e^{s\ell} - \alpha_2(k-i\ell)^{r_2} e^{2s\ell} - \alpha_3(k-i\ell)^{r_3} e^{3s\ell} \right]. \] (18)

Proof: Taking \(v(k) = e^{-sk} \) and applying (16) in (16), we get (18).

Example 2.17 Taking \(k = 9, \ell = 1, n = 3, \alpha_1 = 0.8, \alpha_2 = 0.3, r = 3 \) and \(s = 2 \) in (18), then we obtained
\[e^{-9} - F_4e^{5} - (0.3)6^2F_3e^{-4} = \sum_{i=0}^{F_i5^{9-i}} \left[1 - (0.8)(9 - i)^3 e - (0.3)(9 - i)^2 e^2 \right] = -89333078.94 \]
where \(F_0 = 1, F_1 = 583.2, F_2 = 238903.02, F_3 = 65566186.13 \) and \(F_4 = 11333348840. \)

Theorem 2.18 Let \(t \in \mathbb{N}(0) \). Then a closed form solution of the generalized \(m^{th} \) order difference equation \(v(k) - \sum_{i=1}^{m} \alpha_i k^{r_i} v(k-i\ell) = \left[k^t - \sum_{i=1}^{m} \alpha_i k^{r_i} (k-i\ell)^i \right] \) is
\[\frac{1}{\lambda_\alpha(\ell)} \left[k^t - \sum_{i=1}^{m} \alpha_i k^{r_i} (k-i\ell)^i \right] = k^t. \] (19)

3brittosch@gmail.com
Proof: Taking \(v(k) = k^t \) in (2) and using (3), we get (19).

Corollary 2.19 If \(v(k) = \frac{1}{\lambda_\alpha(t)} \left[k^t - \sum_{p=1}^{m} \alpha_p k^{r_p} (k - p\ell)^t \right] \) is the closed form solution given in (19), then
\[
v(k) - F_{n+1}(k - (n + 1)\ell)^t - \sum_{i=0}^{n} F_{n-i} \alpha_{i+2} [k - (n - i)\ell]^{r_{i+2}} (k - (n + 2)\ell)^t + \ldots
\]
\[
F_n \alpha_m (k-n\ell)^m (k-(n+m)\ell)^t = \sum_{i=0}^{n} F_i [(k-i\ell)^t - \sum_{p=1}^{m} \alpha_p (k-p\ell)^{r_p} [k-(i+p)\ell]^t].
\]

Proof: Taking \(u(k) = k^t - \sum_{p=1}^{m} \alpha_p k^{r_p} (k - p\ell)^t \) in Theorem (2.12), we have (20).

Example 2.20 Let \(k = 7, \ell = 2, n = 3, t = 2, r = 3, s = 4 \alpha_1 = 5, \alpha_2 = 3 \) in Corollary (2.19). Then
\[
\sum_{i=0}^{3} F_i u(7 - 2i) = v(7) - F_1 v(-1) - \alpha_2 F_3 v(-3) = -5,026, 731, 585.
\]
where \(u(k) = k^t - \alpha_1 k^r (k - \ell)^t - \alpha_2 k^s (k - 2\ell)^t \), \(F_0 = 1, F_1 = 1715, F_2 = 1,079,078, F_3 = 148,891,115 \) and \(F_4 = 1,006,671,529 \).

Corollary 2.21 If \(v(k) \) is a closed form solution of \(m^{th} \) order difference equation with variable co-efficients
\[
v(k) - \sum_{i=1}^{m} \alpha_i k^{r_i} v(k-i\ell) = k^t a^{s(k-i\ell)} - \sum_{i=1}^{m} \left[\alpha_i k^{r_i} (k-i\ell)^t a^{s(k-i\ell)} \right],
\]
then we have
\[
k^t a^s - F_{n+1}(k - (n + 1)\ell)^t a^{s(k-(n+1)\ell)} - \sum_{i=0}^{n} F_{n-i} \alpha_{i+2} [k - (n - i)\ell]^{r_{i+2}} \times
\]
\[
(k - (n + 2)\ell)^t a^{s(k-(n+2)\ell)} + \ldots + F_n \alpha_m (k-n\ell)^m (k-(n+m)\ell)^t a^{s(k-(n+m)\ell)}
\]
\[
= \sum_{i=0}^{n} F_i [(k-i\ell)^t - \sum_{p=1}^{m} \alpha_p (k-p\ell)^{r_p} [k-(i+p)\ell]^t a^{s[k-(i+p)\ell]}].
\]

Proof: Taking \(u(k) = k^t a^s - \sum_{i=1}^{m} \left[\alpha_i k^{r_i} (k-i\ell)^t a^{s(k-i\ell)} \right] \) in Theorem (2.12) and using (4), we get (21).

Corollary 2.22 A closed form solution of generalized third order difference equation
\[
\Delta_{\lambda_\alpha(t)} v(k) = k^2 a^{sk} - \sum_{i=1}^{3} \left[\alpha_i k^{r_i} (k-i\ell)^2 a^{s(k-i\ell)} \right]
\]
is \(k^2 a^k \) and hence we have
Proof: The proof follows by taking $m = 3$ and $t = 2$ in Corollary (2.21).

Example 2.23 Let $k = 5$, $\ell = 2$, $a = 3$, $n = 4$, $\alpha_1 = 0.02$, $\alpha_2 = 0.03$, $r = 3$, $s = 2$ in Corollary (2.22). Then we obtain

$$
v(5) - F_3v(-5) - (0.03)F_3v(-7) = \sum_{i=0}^{3} F_i[(5 - 2i)^33^k - (0.02)(5 - 2i)^3 \times [5 - (i + 1)^2][35 - (i + 1)^2] - (0.03)(5 - 2i)^3]^{35 - 2(i + 2)} = 24,611,856.47,
$$

where $F_0 = 1$, $F_1 = 2.5$, $F_2 = 2.1$, $F_3 = 0.717$, $F_4 = 0.04866$ and $F_5 = 0.0477864$.

Corollary 2.24 A closed form solution of the second order difference equation

$$
v(k) - \sum_{i=0}^{3} \alpha_i k^r v(k - i\ell) = k^t e^{-sk} - \sum_{p=1}^{3} \alpha_p k^r_p (k - p\ell)^t e^{-s(k - p\ell)}
$$

is given by

$$
k^t e^{-sk} - F_{n+1}(k - (n + 1)\ell) e^{-s(k - (n + 1)\ell)} - \sum_{i=0}^{1} F_{n-i}\alpha_{i+2} [k - (n - i)\ell]^{r_{i+2}} \times (k - (n + 2)\ell)^t e^{-s(k - (n + 2)\ell)} + F_n\alpha_3 (k - n\ell)^{r_3} (k - (n + 3)\ell)^t e^{-s(k - (n + 3)\ell)}
$$

$$
= \sum_{i=0}^{n} F_i e^{-s(k - i\ell)} [(k - i\ell)^t - \sum_{p=1}^{3} \alpha_p (k - (p + i)\ell)^r_p [k - (p + i)\ell]^t e^{s\ell d}].
$$

Proof: Taking $a = e^{-1}$ in (21), we get (23).

Corollary 2.25 If $v(k) = - \frac{1}{\lambda_n(\ell)} \left[ke^{-sk} - \sum_{p=1}^{m} \alpha_p k^p (k - p\ell)^t e^{-s(k - \ell)} \right]$ is the closed form solution given in (23), then

$$
ke^{-sk} - F_{n+1}(k - (n + 1)\ell) e^{-s(k - (n + 1)\ell)} - \sum_{i=0}^{1} F_{n-i}\alpha_{i+2} [k - (n - i)\ell]^{r_{i+2}} \times (k - (n + 2)\ell)^t e^{-s(k - (n + 2)\ell)} + F_n\alpha_3 (k - n\ell)^{r_3} (k - (n + 3)\ell)^t e^{-s(k - (n + 3)\ell)}
$$

$$
= \sum_{i=0}^{n} F_i e^{-s(k - i\ell)} [(k - i\ell)^t - \sum_{p=1}^{3} \alpha_p (k - (p + i)\ell)^r_p [k - (p + i)\ell]^t e^{s\ell d}].
$$
Proof: The proof follows by taking \(t = 1 \) in Corollary (2.24).

Theorem 2.26 Let \(v(k) \) be a solution of the \(n^{th} \)-order difference equation with variable co-efficients

\[
v(k) - \sum_{i=0}^{m} \alpha_i k^{r_i} v(k - i\ell) = \sum_{p=1}^{m} \alpha_p k^{r_p} (k - p\ell)^{(t)} a^{s(k-p\ell)},
\]

then we have

\[
k^{(t)} a^{sk} - F_{n+1}(k - [n + 1]\ell)^{(t)} a^{s(k-[n+1]\ell)} - \sum_{i=0}^{n-1} F_{n-i} \alpha_{i+2} [k - (n - i)\ell]^{r_{i+2}} \times \]

\[
(k - [n + 2]\ell)^{(t)} a^{s(k-[n+2]\ell)} - \sum_{i=0}^{n-3} F_{n-i} \alpha_{i+3} [k - (n - i)\ell]^{r_{i+3}} (k - [n + 3]\ell)^{(t)} a^{s(k-[n+3]\ell)} + \ldots + F_n \alpha_m (k - n\ell)^{r_m} (k - [n + m]\ell)^{(t)} a^{s(k-[n+m]\ell)}
\]

\[= \sum_{i=0}^{n} F_i a^{s(k-i\ell)} [k - i\ell]^{(t)} - \sum_{p=1}^{m} \alpha_p (k - i\ell)^{r_p} (k - (i + p)\ell)^{(t)} a^{-sp\ell}] \quad (25)\]

Proof: Taking \(v(k) = k^{(t)} a^{sk} \) in Theorem (2.12) and using (4), we get (25).

Corollary 2.27 If \(v(k) \) is the closed form solution given of (25), then

\[
k^{(2)} a^{sk} - F_{n+1}(k - [n + 1]\ell)^{(2)} a^{s(k-[n+1]\ell)} - \sum_{i=0}^{1} F_{n-i} \alpha_{i+2} [k - (n - i)\ell]^{r_{i+2}} \times \]

\[
(k - (n + 2)\ell)^{(2)} a^{-s(k-(n+2)\ell)} - F_n \alpha_2 (k - n\ell)^{r_3} [k - (n + 3)\ell]^{(t)} e^{-s(k-(n+3)\ell)}
\]

\[= \sum_{i=0}^{n} F_i a^{s(k-i\ell)} [k - i\ell]^{(2)} - \sum_{p=1}^{3} \alpha_p (k - i\ell)^{r_p} [k - (i + p)\ell]^{(2)} a^{-ps\ell}] \quad (26)\]

Proof: The proof follows by taking \(m = 3 \) and \(t = 2 \) in Theorem (2.26).

Example 2.28 Let \(k = 7, \ell = 2, a = 3, n = 2, a_1 = 0.04, a_2 = 0.06, r = 4, s = 3 \) in Corollary (2.27). Then we obtain

\[
v(7) - F_3 v(1) - (0.06)3^3 F_2 v(-1) = \sum_{i=0}^{2} F_i [(7 - 2i)^{(2)} 3^{k-2i} - 0.06)(7 - 2i)^3 = 7 - 2(i+1)]^{(2)} 3^{7-2(i+1)} - 0.06)(7 - 2i)^{(2)} 3^{7-2(i+2)} = 84008.0808,
\]

where \(F_0 = 1, F_1 = 96.04, F_2 = 2421.58, F_3 = 8566.2192.\)

Corollary 2.29 Let \(v(k) \) be a solution of \(n^{th} \) order difference equation with variable co-efficients \(v(k) - \sum_{i=0}^{m} \alpha_i k^{r_i} v(k - i\ell) = e^{-sk} k^{(2)} - \sum_{p=1}^{m} \alpha_p k^{r_p} (k - p\ell)^{(2)} e^{ps\ell}].\)
Then we have
\[k^{(2)} e^{-sk} - F_{n+1}(k - [n + 1])\ell^{(2)} e^{-s(k-[n+1])\ell} - \sum_{i=0}^{1} F_{n-i}\alpha_{i+2}[k - (n - i)\ell]r_{i+2} \times \]
\[(k - (n + 2)\ell)^{(2)} e^{-s(k-(n+2)\ell)} - F_{n}\alpha_{3}(k - n\ell)r_{3}(k - (n + 3)\ell)^{(2)} e^{-s(k-(n+3)\ell)} \]
\[= \sum_{i=0}^{n} F_i e^{-(k-\ell)} \left[(k - i\ell)^{(2)} - \sum_{p=1}^{m} \alpha_p(k - i\ell)^{rp}[k - (i + p)\ell]^{(2)} e^{ps\ell} \right]. \] (27)

Proof: Taking \(a = e^{-1} \) in (2.27), we get (27).

Example 2.30 Let \(k = 6, \ell = 0.21 \) \(n = 2, a = 0.2, \alpha_1 = 2, \alpha_2 = 0.3, r = 3, s = 2 \) in Corollary (2.29). Then we obtain
\[v(6) - F_3 v(5.37) - (0.3)(5.58)^2 F_2 v(5.16) = \sum_{i=0}^{3} F_i [(6 - (0.21)i)^{(3)}(0.2)^k-(0.21)i - \]
\[(2)(6 - (0.21)i)^{(3)}(6 - (0.21)(i+1))(0.2)^{6-(0.21)(i+1)} - (3)(6 - (0.21)i)^2 \]
\[[6 - (0.21)(i+2)]^{(3)}3^{6-(0.21)(i+2)]} = -7.539, 276.706093, \]
where \(F_0 = 1, F_1 = 432, F_2 = 167717.1217 \) and \(F_3 = 8746152.49. \)

3. Conclusion
We obtained summation formula to Higher order Fibonacci sequence by introducing generalized \(m^{th} \) order difference operator with variable co-efficients and have derived certain results on closed and summation form solution of generalized \(m^{th} \) order difference equation with variable co-efficients which will be used to our further research.

References

