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Abstract

In this paper, a novel variant of Differential Transform Method (DTM), Shooting Type

Differential Transform Algorithm (STDTA) is used to solve some problems in fluid mechanics

with one of the boundary conditions at infinity. The analytical solution obtained by using this

method is effective in the sense that accuracy is found more. To apply the condition at infinity

two procedures are used. STDTA is an effective method for solving these types of problems.

Key words: Nonlinear boundary layer problems, analytical solutions, STDTA, Pade

Approximants, Boundary conditions at infinity, Final value theorem.
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1. Introduction

Most of the problems occurring in boundary layer theory turn out to be nonlinear

ordinary differential equations with one of the conditions at infinity. A novel method,

Shooting Type Differential Transform Algorithm (STDTA), a variation of Differential

Transform Method (DTM), is applied to solve these type of problems. Shooting Type

Adomian Method (STAM) [12] and Shooting Type Laplace Adomian Decomposition

Algorithm (STLADA) [13] are used to solve these type of problems. The analytical

solution obtained through DTM is a power series. Hence we use (n/n) Pade

approximants in two different procedures to get the value of the parameter; first one

being a direct application and the second uses the Final value theorem for Laplace

transform. The convergence is very fast for a lower number of approximations. The

convergence rate is more with a few approximations. Two boundary layer problems
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of different orders are considered with one of the boundary conditions at infinity.

2. Shooting Type Differential Transformation Algorithm

Differential Transform Method is an analytical method based on Taylor expansion.

The concept of differential transform method is first proposed by Zhou. It is applied

to electric circuit analysis problems for solving initial value problems. After words,

it is applied to several systems and differential equations. Several authors have used

this method and their variations to solve initial value problems [8], Integro-differential

equations [11, 14], Difference equations [1], Partial Differential equations [2, 5] and

system of differential equations [3].

Definition 2.1 The one-dimensional differential transform of a function y(x) at the

point x = x0 is defined as follows [7]:

Y (k) =
1

k!

[ dk
dxk

y(x)
]∣∣∣
x=x0

(1)

where y(x) is the original function and Y (k) is the transformed function.

Definition 2.2 The differential inverse transform of Y (k) is defined as follows:

y(x) =
∞∑
k=0

Y (k)(x− x0)k (2)

From (1) and (2) we obtain

y(x) =
∞∑
k=0

1

k!

[ dk
dxk

y(x)
]
(x− x0)k (3)

The following theorems can be deduced from the above definitions:

Theorem 2.3 If f(x) = g(x)± h(x), then

F (k) = G(k)±H(k). (4)
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Theorem 2.4 If f(x) = λg(x), then

F (k) = λG(k) (5)

where λ is a constant.

Theorem 2.5 If f(x) = dn

dxn
g(x), then

F (k) =
(k + n)!

k!
G(k + n). (6)

Theorem 2.6 If f(x) = g(x)h(x), then

F (k) =
k∑

k1=0

G(k1)H(k − k1). (7)

Theorem 2.7 If f(x) = g(x) d
2

dx2
h(x), then

F (k) =
k∑
r=0

(k − r + 1)(k − r + 2)G(r)H(k − r + 2). (8)

Let X be a Banach space and consider the functional equation defined on the Banach

space X, Tu = b where T is an operator from X to X, b is a given function in X,

and for each b satisfying the functional equation [4, 15] is the solution. Assume that

the functional equation has a unique solution for each b ∈ X.

The operator T consists of non-linear and linear terms, and the linear term is split

into L1 +L2, where L1 is invertible and it contains the highest order derivative of the

given problem and L2 is the rest of the linear operator.

Thus T = L1 + L2 + N where N is a non-linear operator. Hence the functional

equation becomes

L1u = b− L2u−Nu.

Applying the Differential Transform to the above equation, the transformed equation

is obtained as

U(k + n) =
F (k)

(k + n)!
(9)
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where F (k) is the differential transform of f(x, u, u′, u′′, . . . , u(n−1)) = b− L2u−Nu.

Then transformed conditions given with the problem can be written as

U(k) = J, U(m) =
N∑
j=0

m−1∏
i=1

(j − i)U(k) = Im, (m < n), (10)

where m is the order of the derivative in the boundary conditions and J, Im are

real constants. Using equations (9) and (10) the values of Ui, i = 1, 2, 3, . . .

can be determined and then using inverse differential transformation, the following

approximate solution can be determined as

UN =
N∑
k=0

U(k)xk. (11)

To begin with, initial value problems are solved by DTM. The authors [14] have

introduced Shooting Type Differential Transform Algorithm (STDTA), to solve

boundary value problems efficiently.

Shooting Type Differential Transform Algorithm (STDTA) consists of the following

steps: (i) Converting the given boundary value problem into an initial value problem

by assuming the missing initial conditions; (ii) applying the DTM to the converted

initial value problem and (iii) finding the value(s) of the assumed constant(s) by

applying the boundary condition(s) at the second point. If the second point is ∞,

then we have to resort diagonal Pade approximants. This can be done in two different

procedures.

3. The Pade Approximants

Let
∑∞

i=0 aix
i be the series representation a function f(x), so that

f(x) =
∞∑
i=0

aix
i. (12)

The Pade approximant is a rational fraction and the [L/M ] Pade approximant [6] is

taken as

[L/M ] =
NL(x)

DM(x)
(13)
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where NL(x) is a polynomial of degree at most L and DM(x) is a polynomial of degree

at most M .

Here

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · , (14)

NL(x) = p0 + p1x+ p2x
2 + p3x

3 + · · ·+ pLx
L, (15)

DM(x) = q0 + q1x+ q2x
2 + q3x

3 + · · ·+ qMx
M . (16)

Notice that, in (13), the number of coefficients in the numerator and denominator

are L + 1 and M , respectively, since the constant term in the denominator is taken

as 1. Since we can clearly multiply the numerator and denominator by a constant

and leave [L/M ] unchanged.

If the notation of formal power series, [10]

∞∑
i=0

aix
i =

p0 + p1x+ p2x
2 + p3x

3 + · · ·+ pLx
L

q0 + q1x+ q2x2 + q3x3 + · · ·+ qMxM
+O(xL+M+1) (17)

Cross-multiplying (17), we find that

(a0 + a1x+ a2x
2 + a3x

3 + · · · )(1 + q1x+ q2x
2 + q3x

3 + · · ·+ qMx
M)

= (p0 + p1x+ p2x
2 + p3x

3 + · · ·+ pLx
L) +O(xL+M+1). (18)

From (18) we obtain a set of equations, by equating like terms, and solving them

gives the [L/M ] Pade approximant. We are using the Final value theorem for Laplace

transform [12, 13].

4. Illustrative Examples

Example 4.1 Consider the second-order nonlinear ordinary differential equation [9,

10]

2u′′ + u− u2 = 0, u(0) = 0, u(∞) = 1 (19)

that governs the steady mixed convection flow past a plane of arbitrary shape under

the boundary layer and Darcy-Boussinesq approximations. Equation (19) admits an

exact solution given by

u(x) =
1

2

(
− 1 + 3 tanh2

[1
4

(
√

2x+ 4arctanh
[ 1√

3

]
)
])

(20)

Journal of Computational Mathematica Page 111 of 116



2456-8686, 6(1), 2022: 107-116
https://doi.org/10.26524/cm124

Applying STDTA to the equation (19), we get

U(k + 2) =
−U(k) +

∑k
k1=0 U(k1)U(k − k1)

2(k + 1)(k + 2)
, k ≥ 0 (21)

with U(0) = 0. We assume u′(0) = α. Hence U(1) = α and the value of α to be

found out by applying the condition u(∞) = 1.

Substituting k = 0, 1, 2, 3, . . . , in (21), we get

U(2) = 0, U(3) =
−α
12

, U(4) =
α2

24
, U(5) =

α

480
, U(6) =

−α2

288
, U(7) =

1

84

[−α
480

+
α3

12

]
,

U(8) =
α2

7680
, U(9) =

1

144

[ α

40320
− 30α3

2016

]
, U(10) =

1

180

[−114α2

322560
+

15α4

4032

]
.

Therefore u10(x) = ax− α

12
x3 +

α2

24
x4 +

α

480
x5 − α2

288
x6 +

1

84

[−α
480

+
α3

12

]
x7

α2

7680
x8 +

1

144

[ α

4032
− 30α3

2016

]
x9 +

1

180

[−114α2

322560
+

15α4

4032

]
x10. (22)

Diagonal Pade approximants are used to estimate the parameter α, through two

procedures. Note that the condition at infinity applies to diagonal approximants

produces a finite value.

In the first procedure, Pade approximant is directly applied to u(x). Let

u(x) =
c0 + c1x

1 + c2x
(23)

be the [1/1] Pade. Cross multiplying, expanding and equating (23) up to the term

x2, we get c0 = 0, c1 = α, c2 = 0. Applying the condition u(∞) = 1 does not yield

any result about α. Then

u(x) =
c0 + c1x+ c2x

2

1 + c3x+ c4x2
(24)

be the [2/2] Pade. Cross multiplying, expanding and equating (24) up to the term

x4, we get c2 = 0.5α2, c4 = 0.083333333. Using these values of c2 and c4 we get

α = 0.40824829.

Similarly applying the condition u(∞) = 1 to [3/3] and [4/4] Pade give the values

of α as α = 0.43969686 and α = 0.419133314. We see that the value of α is

converging. The exact value of α is 0.40824829, which is the value obtained in [2/2]
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Pade. Comparison of the exact solution with un is shown in Table 1.

x u1 = u2 u3 u4 u5 Exact

0.2 0.08164966 0.08137749 0.08138860 0.08138888 0.08138884

0.4 0.16329932 0.16112199 0.16129976 0.16130848 0.16130621

0.6 0.24494897 0.23760050 0.23850050 0.23856664 0.23854154

0.8 0.32659863 0.30918004 0.31202448 0.31230318 0.31216625

1.0 0.40824829 0.37422750 0.38117204 0.38202256 0.38151634

Table 1: Convergence of un with Exact solution

In the second procedure, Laplace transform of the dependent variable is taken,

multiplied by s and Final value Theorem is used to get the value of the parameter.

Here, we get

su(s) =
α

s
− α

2s3
+
α2

s4
+

α

4s5
− 5α2

2s6
+

60

s7

[−α
480

+
α3

12

]
+

21α2

4s8
+ · · · . (25)

The first diagonal Pade is assumed as

sL[u(x)] =
c0 + c1

s

1 + c2
s

.. (26)

Cross multiplying, expanding and equating (26) up to the term
1

s2
, we get c0 = 0, c1 =

α, c2 = 0. The condition u(∞) = 1 turns as lim
s→0

su(s) = 1. The application to first

diagonal Pade approximant gives the value of α as 0. The successive diagonal Pade

approximants of su(s) give the value of α respectively as 0.5, 0.44557584, 0.42970601.

Table 2 presents a comparison with the exact solution.
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x u4 u6 u8 Exact

0.2 0.09968330 0.08883160 0.08566728 0.08138888

0.4 0.19760000 0.17607237 0.17208865 0.16130621

0.6 0.29235000 0.26043724 0.25112800 0.23850049

0.8 0.38293333 0.34096125 0.32872558 0.31216624

1.0 0.46875000 0.41695581 0.40193699 0.38151634

Table 2: Convergence of un with Exact solution

Example 4.2 Consider the nonlinear boundary-layer problem φ′′′+φφ′′−φ′2+1 = 0

with boundary conditions φ(0) = 0, φ′(0) = 0, φ′(∞) = 1. This equation arises in

plane stagnation point flow [12, 13].

Applying STDTA to the above equation, we get

φ(k + 3) = 1
(k+1)(k+2)(k+3)

{
−
∑k

r=0(k − r + 2)(k − r + 1)φ(r)φ(k − r + 2)

+
k∑
r=0

(r + 1)(k − r + 1)φ(r + 1)φ(k − r + 1)− δ(k − 0)

}
, k ≥ 0 (27)

φ(0) = 0, φ′(0) = 0 and let φ′′(0) = α. Then Φ(0) = 0,Φ(1) = 0 and Φ(2) = α
2
.

Proceeding as in the previous problem, we get

φ(x) =
αx2

2
− x3

6
+
α2x5

120
− αx6

360
+

x7

2520
− α3x8

40320
+

α2x9

90720
+ · · · (28)

Therefore

φ′(x) = αx− x2

2
+
α2x4

24
− αx5

60
+

x6

360
− α3x7

5040
+

α2x8

10080
− · · · (29)

In the first procedure, Pade approximant is directly applied to φ′. Let φ′(x) = c0+c1x
1+c2x

,

where ci, 0 ≤ i ≤ 2 to be determined. Cross multiplying, equating and simplifying

we get c0 = 0, c1 = α, c2 = 1
2α

.

Applying the condition φ′(∞) = 1, we get α = ±0.7071068. Similarly applying the

condition φ′(∞) = 1 to second, third and fourth diagonal Pade give the values of α

as α = ±1.41421356, α = 1.24466595 and α = 1.22403746 respectively.
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In the second procedure, Laplace transform of the dependent variable is taken,

multiplied by s and Final Value Theorem for Laplace transform is used to get the

value of the parameter. Here, we get

sφ(s) =
α

s
− 1

s2
+
α2

s4
− 2α

s5
+

2

s6
− α3

s7
+

4α2

s8
+ · · · .

The first diagonal Pade approximant for this function is taken as sL[φ′(x)] =
c0+

c1
s

1+
c2
s

,

ci, 0 ≤ i ≤ 2 are constants to be determined. The condition φ′(∞) = 1 turns as

lim
s→0

sφ(s) = 1. The application to first diagonal Pade approximant gives the value of

α as ±1. The successive diagonal Pade approximants of sφ(s) give the values of α

respectively as 1.27201965,±1 and 1.23285265. The exact value of α is 1.2326 [12, 13].

Thus, we observe that in the second procedure faster convergence is occurring.

5. Conclusion

In the present paper, we applied STDTA to two different boundary layer problems

of different orders and used two different procedures of handling the boundary

condition at infinity. Among all these methods this has received remarkable attention

due to its simplicity and easy iterative procedure. Advantage of this method is to

minimize the tedious computational work when providing the series solution with a

fast convergence rate.Computations are performed using Sage Math.
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