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Abstract

A common assumption in replacement problems is that the repair of a failed system may

yield a functioning system, which may be either as good as new (complete repair) or as old as

just prior to failure (partial repair). In this paper, we study the partial product process and

replacement model for a deteriorating system under various conditions and a repairable system

of an alternative repair model, called the Negligible Or Non-Negligible (NONN) repair times

introduced by Thangaraj and Rizwan [2001] to develop a new repair model, some replacement

policies (T,N) and (T+,N) with NONN repair times where T is the working age of the system and

N is the number of failures of the system and T+ is the system replaced at the first failure point

after the cumulative operating time exceeds T are studied. Furthermore, explicit expressions

for the long-run average cost of the policies are derived. Optimal replacement policies for the

deteriorating systems using partial product process is developed.

Key words: Partial product Process, Replacement policy, Extreme shock Maintenance model,

Alternative Repair Times .

AMS classification: 60K10 , 90B25.

1 Introduction
The study of maintenance problem plays an important role in reliability. Most

of the maintenance models just pay attention on the internal cause of the system
failure, but do not an external cause of the system failure. A system failure may be
caused by some external cause of the system failure. A system failure may be caused
by some external cause, such as shock. The Shock models have been successfully
applied to different fields, such as physics, communication, electronic engineering and
medicine, etc. However, only a very few authors consider the deteriorating systems
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interrupted by random shocks. In our model, the system will fail, if the amount
of shock damage by one big shock exceeds a specific threshold. In the model, the
shock is called a deadly shock if the amount of damage of the shock to the system
exceeds a specific threshold so that the system will fail. This kind of shock models
is called an extreme shock model. Chen and Li [2008] have considered an extreme
shock model. Also an alternative repair model called the Negligible Or Non-Negligible
(NONN) repair times introduced by Thangaraj and Rizwan [2001] is incorporated in
this paper to develop an extreme shock model for the maintenance problem some
bivariate replacement policies. The long-run average cost for a degenerative system
under the replacement policy just prior to failure (partial repair). In this paper, we
study the partial product process and replacement model for a deteriorating system
under various conditions and a repairable system of an alternative repair model, called
the Negligible Or Non-Negligible (NONN) repair times introduced by Thangaraj and
Rizwan [2001] to develop a new repair model, some replacement policies (T,N), and
(T+,N) with NONN repair times where T is the working age of the system and N
is the number of failures of the system, T+ is the system replaced at the first failure
point after the cumulative operating time exceeds T . Existence of optimality under
the aforesaid bivariate replacement policies are deduced. The rest of the paper is
organized as follows: In Section 2, we give some basic preliminaries, In Section 3,
we give some model assumptions. In Section 4, we derive explicit expressions for the
long-run average cost per unit time for this model under the bivariate replacement
policies (T,N) and (T+,N). Finally, conclusion is given in Section 5.

2 Preliminaries
The preliminary definitions and results relevant to this are given below.

Definition 2.1 Given two random variables X and Y , X is said to be stochastically
smaller than Y (or Y is stochastically greater than X ), if P(X > α)6 P(Y > α)

for all real α. This is written as X 6st Y or Y >st X .

Definition 2.2 A stochastic process {Xn,n = 1,2,3 . . .} is said to be stochastically
decreasing (increasing) if Xn >st (6st)Xn+1, f orall n = 1,2,3 . . . .

Definition 2.3 A stochastic process {Y n,n = 1,2,3 . . .} is said to be stochastically
increasing (decreasing) if Y n 6st (>st)Yn+1, f orall n = 1,2,3 . . . .
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Definition 2.4 An integer valued random variable N is said to be a stopping time
for the sequence of independent random variables X1,X2, . . . , if the event {N = n} is
independent of Xn+1,Xn+2, . . . for all n = 1,2, . . . .

Definition 2.5 Let {Xn,n = 1,2,3, . . .} be a sequence of independent and
non-negative random variables and let F(x) be the distribution function of X1. Then
{Xn,n = 1,2,3 . . .} is called partial product process, if the distribution function of
Xk+1 is F (αkx)(k = 1,2,3 · · ·), where αk > 0 are real constants and
αk = α0α1α2 . . .αk−1. In what follows, F(x) denotes the distribution function of
non-negative random variable X1.

Lemma 2.6 If αk = α0α1α2 . . .αk−1, then αk = α2k−1

0 (k = 1,2,3, . . .).

Lemma 2.7 The partial product process {Xn,n = 1,2,3 · · ·} is

(i) stochastically decreasing, if α0 > 1
(ii) stochastically increacing, if 0 < α0 < 1

Definition 2.8 A
¯
bivariate replacement policy (T,N)

It is a policy that replaces the system at T or at N-th failure since the last replacement,
whichever occurs soon.

Definition 2.9 A bivariate replacement policy (T+,N)

A bivariate replacement policy (T+,N) is a replacement model under which the system
is replaced at the first failure point after the cumulative operating time exceeds T or
at the occurance of N-th failure, whichever occurs earlier.

Definition 2.10 If the sequence of nonnegative random variables {X1,X2, . . .} is
independent and identically distributed, then the counting process {N(t), t > 0} is
said to be a renewal process.

Definition 2.11 If a repair to a system after failure is done in negligible or
non-negligible time, then it will be called a model with NONN repair times

In this case, whenever the system fails, two possibilities may arise: either, the repair
takes Negligible time with probability p ; or Non-Negligible time with probability
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1− p.

Lemma 2.12 Let E(X1) = λ , var(X1) = σ2. Then for k = 1,2,3, . . . . E (Xk+1) =
λ

α2k−1
0

and var(Xk+1) =
σ2

α02k , where α0 > 0.

Theorem 2.13 (Wald’s equation) If X1,X2, . . . are independent and identically
distributed random variables having finite expectations and if N is the stopping time
for X1,X2, . . . such that E[N]< ∞, then

E

[
N

∑
n=1

Xn

]
= E[N]E [X1] .

Theorem 2.14 (Wald’s equation for partial product process) Suppose that
{Xk,k = 1,2,3, . . .} forms a partial product process with ratio α0 and E[X1] = µ < ∞

and if ω(t) = sup
k∈Z+
{k : Vk ≤ t} and Vk =

k

∑
i=1

Xi. Then for t > 0,

E
[
Vω(t)+1

]
= µE

[
1+

ω(t)+1

∑
k=2

1

α2k−2
0

]
.

Definition 2.15 (Renewal Reward Theorem) A cycle is completed every time a
renewal occurs then If E[R] < ∞ and E[X] < ∞, then

(i) with probability 1, limt→∞
R(t)

t = E[R]
E[X ]

(ii) limt→∞
E[R]
E[X ]

the above states that in the long run average reward is just the expected reward
earned during a cycle divided by the expected length of a cycle.

3 Model Assumptions
We make the following assumptions about the model for a simple degenerative

reparable system subject to shocks.

Assumption 3.1 At time t = 0, a new system is installed . Whenever the system
fails it will be repaired. The System will be replaced by an identical new one,
sometimes later.
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Assumption 3.2 Once the system is operating , the shocks from the environment
arrive according to a renewal process. Let Xni, i= 1,2, . . . be the intervals between
the (i−1)-st and i-th shock, after the (n−1)-st repair. Let E(X11) = λ . Assume
that Xni, i=1,2,. . .. are independent and identically distributed random variables,
for all n ∈ N.

Assumption 3.3 Let Yni, i = 1,2, . . . be the sequence of the amount of shock damage
produced by the i-th shock, after the (n− 1)-st repair. Let E(Y11) = µ . Then
{Yni, i = 1,2, . . .} are iid sequences, for all n ∈ N. If the system fails, it is closed,
so that the random shocks have no effect on the system during the repair time.
In the n-th operating stage, that is, after the (n− 1)-st repair, the system will
fail, if the amount of the shock damage first exceed α2n−1

0 M, where 0 < α0 6 1
and M is a positive constant.

Assumption 3.4 Let Zn, n = 1,2, . . . be the repair time after the n-th repair
and {Zn,n = 1,2, . . .} constitute a non decreasing partial product process with
E(Z1) = δ and ratio α0, such that 0 < α0 < 1. Nn(t) is the counting process
denoting the number of shocks after the (n− 1)-st repair. It is clear that
E(Zn) =

λ

α2n−1
0

.

Assumption 3.5 Let r be the reward rate per unit time of the system, when it
is operating and c be the repair cost rate per unit time of the system and
the replacement cost is R. The replacement time is a random variable Z with
E(Z) = τ.

Assumption 3.6 The sequences {Xni, i = 1,2, . . .} , {Yni, i = 1,2, . . .} , {Zn,n = 1,2, . . .}
and Z are independent.

Assumption 3.7 Assume that Fn(t) is the cumulative distribution of Un =
n
∑

i=1
Wi and

Gn(t) is the cumulative distribution of Vn =
n
∑

i=1
Zi.

Assumption 3.8 Define ξn =

Zn i f Zn > 0

1 i f Zn = 0
for n = 1,2, . . .

Assumption 3.9 The replacement policy (T,N) and (T+,N) is adapted.

4 The Bivariate Replacement Policies with NONN Repair Times
4.1 The Bivariate Replacement Policy (T,N) with NONN Repair Times
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In this section, we study an extreme shock model for the maintenance problem
of a simple repairable system under (T,N) policy. Let Ln = min{l;Ynl > α2n−1

0 M}

and Wn =
Ln
∑

i=1
Xni. Thus, Ln is the number of shocks until the first deadly shock

occurred following the (n− 1)-st failure and Ln has a geometric distribution with
P[Ln = k] = pnqk−1

n , k = 1,2, . . . , where pn = P[Ynl > α2n−1

0 M] and qn = 1− pn. We have

E(Ln) =
1
pn

. Since {Xni, i = 1,2, . . .} and {Yni, i = 1,2, . . .} are independent, it is clear

that Ln and {Xni}are independent. Now

E(Wn) = E

(
Ln

∑
i=1

Xni

)
= E (Ln) E (Xn1)

=
λ

pn
.

The distribution function of Wn is Fn( · ).
The working age T of the system at time t is the cumulative life time given by

T (t) =

 t−Vn, Un +Vn ≤ t <Un+1 +Vn

Un+1, Un+1 +Vn ≤ t <Un+1 +Vn+1,

where Un =
n
∑

i=1
Wi and Vn =

n
∑

i=1
Zi and U0 =V0 = 0.

By assumption,

E(ξn) = E(Zn)P(Zn > 0)+1P(Zn = 0)

=
λ

α2n−1
0

(1− p)+ p.

Let WN−n =
N

∑
j=n+1

Wj. Then UN =Un+WN−n. Moreover Un and WN−n are independent

, and
HN−n(t) =

∫
∞

0
HN−1−n(a(t− y))dH(y),
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Where HN−1−n(t) is the distribution of
N

∑
j=n+1

X j. Since the distribution function of

Xn+1 is H(t) = F(an(t)), By induction HN−n(t) = FN−n(an(t)). Now,

E[χ(Un < T <UN)] = P(Un < T <UN +WN−n)

=
∫ T

o

∫
∞

T−u
dHN−n(t)dFn(u)

=
∫ T

0
F̄N−n(an(T −u))dFn(u).

Let T1 be the replacement time; in general for n = 2,3, . . . , let Tn be the time between
the (n− 1)-st replacement and the n-th replacement. Thus the sequence {Tn, n =

1,2, . . .} forms a renewal process. A cycle is completed, if a replacement is done.
A cycle is actually the time interval between the installation of the system and the
first replacement or the time interval between two consecutive replacements. Finally
the successive cycles together with the cost incurred in each cycle will constitute a
renewal reward process. The length of the cycle under the replacement policy (T,N)

is

W =

[
T +

η

∑
n=1

ξn

]
χ(Un>T )+

[
N

∑
n=1

Wn +
η−1

∑
n=1

ξn

]
χ(Un≤T )+Z,

where η = 0,1,2, . . .N − 1 is the number of failures before the working age of the
system exceeds T and χ(A) denotes the indicator function. The expected length of a
cycle is

E(W ) = E

[
T +

[
η

∑
n=1

ξn

]
χ(Un>T )

]
+E

[[
N

∑
n=1

Wn +
η−1

∑
n=1

ξn

]
χ(Un≤T )

]
+E(Z)

= E

[
T χ(Un>T )+E

[
η

∑
n=1

ξn

]
χ(Un>T )

]
+E

[
E

[
N

∑
n=1

Wn +
η−1

∑
n=1

ξn

]
χ(Un≤T )

∣∣∣∣Un = u

]
+E(Z)

= T FN(T )+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−1
0

]
E[χ(Un≤T<Un)]+

∫ T

0
E

[
N

∑
n=1

Wn

]
udFN(u)

Journal of Computational Mathematica Page 17 of 30



2456-8686, viii(ii), 2024:011-030
https://doi.org/10.26524/cm193

+
∫ T

0

[
η−1

∑
n=1

E(ξn)

]
dFN(u)+ τ

= T FN(T )+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−1
0

]
P(UN ≤ T <Un +WN−n)+

N

∑
n=1

λ

pn

∫ T

0
udFN(u)

+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
+ τ

= T FN(T )+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−1
0

]∫ T

o

∫
∞

T−u
dHN−n(t)dFn(u)+

N

∑
n=1

λ

pn

∫ T

o
udFN(u)

+ λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
+ τ

= T FN(T )+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−1
0

]∫ T

0
F̄N−n(an(T −u))dFn(u)+

N

∑
n=1

λ

pn

∫ T

o
udFN(u)

+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
+ τ. (1)

Let C (T,N) be the long run average cost per unit time under the bivariate replacement
policy (T,N). By the renewal reward theorem , the long run average cost per unit
time under the replacement policy - (T,N) is given by

C (T,N) =
expected cost incurred in a cycle

expected length of a cycle

=

E
[[

c
η

∑
n=1

ξn− rT
]

χ(Un>T )

]
+ cpE(Z)+E

[[
c

η−1
∑

n=1
ξn− r

N
∑

n=1
Wn

]
χ(Un≤T )

]
+R

E(W )
. (2)

Consider

E

[
η

∑
n=1

ξnχ(Un>T )

]
= E

[
E

(
η

∑
k=1

Zk

∣∣∣∣η = n

)
χ(Un>T )

]

=
∞

∑
n=1

(
η

∑
k=1

E (Zk)

)
P(η = n)χ(Un>T )

=
∞

∑
n=1

[
E (Z1)+

η

∑
k=2

E (Zk)

]
P(η = n)χ(Un>T )
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=
∞

∑
n=1

[
E (Z1)+

η

∑
k=2

E (Zk)

]
P(η = n)χ(Un>T )

= E (Z1)
∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n

∑
k=2

E (Zk)

)
P(η = n)χ(Un>T )

= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

E (Zk+1)

)
P(η = n)χ(Un>T )

E

[
η

∑
n=1

ξnχ(Un>T )

]
= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

λ

α2k−1
0

)
P(η = n)χ(Un>T )

= λP(n = 1)+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1

α2k−1
0

]
P(η = n)

= λ (F1(T )−F2(T ))+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1

α2k−1
0

]
(Fn(T )−Fn+1(T ))

= λF1(T )+λ

∞

∑
n=2

1

α2n−1
0

Fn+1(T )

= λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−1
0

]
. (3)

Now,

E

[
η−1

∑
n=1

ξn

]
= E

[
E

(
η−1

∑
n=1

Zn | η = n

)]

=
∞

∑
n=1

(
η−1

∑
n=1

E (Zn)

)
P(η = n)

=
∞

∑
n=1

[
E (Z1)+

η−1

∑
k=2

E (Zk)

]
P(η = n)

= E (Z1)
∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
η−1

∑
k=1

E (Zk)

)
P(η = n)
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= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

E (Zk+1)

)
P(η = n)

= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

λ (1− p)

α2k−1
0

+ p

)
P(η = n)

= λP(η = 1)+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1− p

α2k−1
0

+ p

]
P(η = n)

= λ (F1−F2)+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1− p

α2k−1
0

+ p

]
Fn(T )−Fn+1(T )

= λF1(T )+λ

∞

∑
n=2

1− p

α2n−1
0

Fn+1(T )+ p

E

[
η−1

∑
n=1

ξn

]
= λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
. (4)

On substituting (1), (3) and (4) in equation (2), we obtain the following

Theorem 4.1 For the model described in section 2, under the assumptions 2.1 to
2.9, the long run average cost per unit time under the bivariate replacement policy
(T,N) for a simple degenerative repairable system is given by

C (T,N)=


cλ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−1
0

]∫ T

0
F̄N−n(an(T −u))dFn(u)+ cpτ +R

−rT FN(T )− r
N

∑
n=1

λ

pn

∫ T

0
udFN(u)+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
+ τ




T FN(T )+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−1
0

]∫ T

0
F̄N−n(an(T −u))dFn(u)

+
N

∑
n=1

λ

pn

∫ T

o
udFN(u)+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
+ τ


Deductions

The long run average cost C (T,N) is a bivariate function in T and N. Obviously,
when N is fixed, C (T,N) is a function of T. For fixed N = m, it can be written as

C (T,N) =Cm(T ),m = 1,2, . . . .
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Thus, for a fixed m, we can find T ∗m by analytical or numerical methods such that
Cm(T ∗m) is minimized. That is, when N = 1,2, . . . ,m, . . . , we can find T ∗1 , T ∗2 , T ∗3 ,. . .T ∗m
,. . . respectively, such that C1(T ∗1 ),C2(T ∗2 ), . . . ,Cm(T ∗m), . . . are minimized. Because the
total life -time of a multistate degenerative system is limited, the minimum of the
long-run average cost per unit time exists. So we can determine the minimum of the
long-run average cost per unit time based on C1(T ∗1 ),C2(T ∗2 ), . . . ,Cm(T ∗m), . . . .
Then, if the minimum is denoted by Cn(T ∗n ), we obtain the bivariate optimal
replacement policy (T,N)∗ such that

C ((T,N)∗) = min
N

Cn(T ∗n )

= min
N

[min
T

C(T,N)]

≤C(∞,N)

≡C(N∗)

the optimal policy (T,N)∗ is better than the optimal policy N∗. Moreover, under
some mild conditions, Stadje and Zukerman [1990] showed that an optimal
replacement policy N∗ is better than the optimal policy T ∗. so under the same
conditions, an optimal policy (T,N)∗ is better than the optimal replacement policies
N∗ and T ∗.

4.2 The Bivariate Replacement Policy (T+,N) with NONN Repair Times

In this section, we study an extreme shock model for the maintenance problem
of a simple repairable system under (T,N) policy. Let Ln = min{l;Ynl > α2n−1

0 M}

and Wn =
Ln
∑

i=1
Xni. Thus, Ln is the number of shocks until the first deadly shock

occurred following the (n− 1)-st failure and Ln has a geometric distribution with
P[Ln = k] = pnqk−1

n , k = 1,2, . . . , where pn = P[Ynl > α2n−1

0 M] and qn = 1− pn. We have
E(Ln) =

1
pn
. Since {Xni, i = 1,2, . . .} and {Yni, i = 1,2, . . .} are independent, it is clear

that Ln and {Xni}are independent. Now

E(Wn) = E

(
Ln

∑
i=1

Xni

)
= E (Ln) E (Xn1)

=
λ

pn
.
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The distribution function of Wn is Fn( · ).
The working age T of the system at time t is the cumulative life time given by

T (t) =

 t−Vn, Un +Vn ≤ t <Un+1 +Vn

Un+1, Un+1 +Vn ≤ t <Un+1 +Vn+1,

where Un =
n
∑

i=1
Wi and Vn =

n
∑

i=1
Zi and U0 =V0 = 0.

By assumption,

E(ξn) = E(Zn)P(Zn > 0)+1P(Zn = 0)

=
λ

α2n−1
0

(1− p)+ p.

Let T1 be the replacement time; in general for n = 2,3, . . . , let Tn be the time between
the (n− 1)-st replacement and the n-th replacement. Thus the sequence {Tn, n =

1,2, . . .} forms a renewal process. A cycle is completed, if a replacement is done.
A cycle is actually the time interval between the installation of the system and the
first replacement or the time interval between two consecutive replacements. Finally
the successive cycles together with the cost incurred in each cycle will constitute a
renewal reward process. The length of the cycle under the replacement policy (T+,N)

is

W =

[[
N

∑
n=1

Wn +
η−1

∑
n=1

ξn

]
χ(UN6T )

]
+

[[
η

∑
n=1

Wn +
η

∑
n=1

ξn−1

]
χ(UN>T )

]
+Z,

where η = 1,2, . . .N− 1 is the number of failures before the total operating time of
the system exceeds T and χ(A) denotes the indicator function. The random variable
η has a geometric distribution given by

P(η = j) = P(W1 6 T,W2 6 T . . . ,Wη−1 6 T,Wη > T ); j=1,2,. . .

= F j−1(T )F̄(T ).
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Since η is a random variable,

E(η−1) =
∞

∑
j=1

P(η = j)

= F̄(T )
∞

∑
j=1

( j−1)F j−1(T )

=
F(T )
F̄(T )

The expected length of a cycle is

E(W ) = E

[[
N

∑
n=1

Wn +
η−1

∑
n=1

ξn

]
χ(UN6T )

]
+E

[[
η

∑
n=1

Wn +
η

∑
n=1

ξn−1

]
χ(UN>T )

]
+E(Z)

(5)

Consider,
[(

N
∑

n=1
Wn

)
χ(UN≤T )

]
= E

[
E
(

N
∑

n=1
Wn

)∣∣∣∣UN = uχ(UN≤T )

]
=
∫ T

o E
(

N
∑

n=1
Wn

∣∣∣∣UN = u
)

dFN(u)

=
∫ T

o udFN(u)E(Wn)

=
N
∑

n=1

λ

pn

∫ T
o udFN(u)

Where Fn(.) is the n-fold convolution of F(.) with itself

E

[
η−1

∑
n=1

ξn

]
= E

[
E

(
η−1

∑
n=1

Zn | η = n

)]

=
∞

∑
n=1

(
η−1

∑
n=1

E (Zn)

)
P(η = n)

=
∞

∑
n=1

[
E (Z1)+

η−1

∑
k=2

E (Zk)

]
P(η = n)

= E (Z1)
∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
η−1

∑
k=1

E (Zk)

)
P(η = n)
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= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

E (Zk+1)

)
P(η = n)

= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

λ

α2k−1
0

)
P(η = n)

= λP(η = 1)+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1− p

α2k−1
0

+ p

]
P(η = n)

= λ (F1−F2)+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1− p

α2k−1
0

+ p

]
Fn(T )−Fn+1(T )

= λF1(T )+λ

∞

∑
n=2

1− p

α2n−1
0

Fn+1(T )+ p

E

[
η−1

∑
n=1

ξn

]
= λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
. (6)

E

[(
η

∑
n=1

Wn

)
χ(Un>T )

]
= E

[(
η

∑
n=1

Wnχ(UN>T )

)]

=

(
N−1

∑
n=1

E(Wn

∣∣∣∣η = n−1)P(Un 6 T <UN)

)

=
F(T )
F̄(T )

N−1

∑
n=1

λ

pn
[Fn(T )−FN(T )] (7)

E

[
η

∑
n=1

ξn−1

]
= E

[
E

(
η

∑
n=1

Zn−1 | η = n

)]

=
∞

∑
n=1

(
η

∑
n=1

E (Zn−1)

)
P(η = n)

=
∞

∑
n=1

[
E (Z1)+

η

∑
k=2

E (Zk+1)

]
P(η = n)

= E (Z1)
∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
η

∑
k=1

E (Zk+1)

)
P(η = n)

= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

E (Zk+2)

)
P(η = n)
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= λ

∞

∑
n=1

P(η = n)+
∞

∑
n=2

(
n−1

∑
k=1

λ

α2k−2
0

)
P(η = n)

= λP(η = 1)+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1

α2k−2
0

]
P(η = n)

= λ (F1−F2)+λ

∞

∑
n=2

[
1+

n−1

∑
k=1

1

α2k−2
0

]
Fn(T )−Fn+1(T )

= λF1(T )+λ

∞

∑
n=2

1

α2n−2
0

Fn+1(T )

E

[
η

∑
n=1

ξn−1

]
= λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−2
0

]
. (8)

On substituting (6), (7), (8) and (9) in equation (5), we obtain the following

E(W ) = E

[[
N

∑
n=1

Wn +
η−1

∑
n=1

ξn

]
χ(UN6T )

]
+E

[[
η

∑
n=1

Wn +
η

∑
n=1

ξn−1

]
χ(UN>T )

]
+E(Z)

= E

[
E

[(
N

∑
n=1

Wn

)
χ(UN6T )

]
+

[
E

(
η−1

∑
n=1

ξn

)
χ(UN6T )

]]

+E

[[(
η

∑
n=1

Wn

)
χ(UN>T )

]
+

[(
η

∑
n=1

ξn−1

)
χ(UN>T )

]]
+E(Z)

= E

[[
E

(
N

∑
n=1

Wn

)∣∣∣∣UN = uχ(UN≤T )

]
+

[
E

(
η−1

∑
n=1

ξn

)∣∣∣∣UN = uχ(UN≤T )

]]

+E

[[(
η

∑
n=1

Wn

)
χ(UN>T )

]
+

[(
η

∑
n=1

ξn−1

)
χ(UN>T )

]]
+E(Z)

=

[[∫ T

o
E

(
N

∑
n=1

Wn

∣∣∣∣UN = u

)
dFN(u)

]
+

[∫ T

o

(
η−1

∑
n=1

E(Zn)

)
dFN(u)

]]
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+

[[(
N−1

∑
n=1

E(Wn

∣∣∣∣η = n−1)P(Un 6 T <UN)

)]]

+

[(
η

∑
n=1

E(Zn−1)P(Un 6 T <UN)

)]
+E(Z)

=

[∫ T

o
udFN(u)E(Wn)

]
+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]

+E

[[(
N−1

∑
n=1

E(Wn

∣∣∣∣η = n−1)(Un 6 T <UN)

)]]

+

[(
η

∑
n=1

E(Zn−1)P(Un 6 T <UN)

)]
+E(Z)

=

[
N

∑
n=1

λ

pn

∫ T

o
udFN(u)

]
+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]

+

[
F(T )
F̄(T )

N−1

∑
n=1

λ

pn
[Fn(T )−FN(T )]

]
+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−2
0

]
+E(Z)

=
N

∑
n=1

λ

pn

∫ T

o
udFN(u)+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]

+

[
F(T )
F̄(T )

N−1

∑
n=1

λ

pn
[Fn(T )−FN(T )]

]
+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−2
0

]
+ τ (9)

Let C (T+,N) be the long run average cost per unit unit per time under the bivariate
replacement policy (T+,N). By the elementary renewal theorem , the long run average
cost per unit time under the replacement policy (T+,N) is given by

C (T+,N) =
expected cost incurred in a cycle

expected length of a cycle

=

E
[(

c
η−1
∑

n=1
ξn− r

N
∑

n=1
Wn

)
χ(UN6T )

]
+R+E

[(
c

η

∑
n=1

(ξn−1)− r
η

∑
n=1

Wn

)
χ(UN>T )

]
+ cpE(Z)

E(W )
.
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=


E
[

E
(

c
η−1
∑

n=1
ξn

)
χ(UN6T )

]
−E

[
E
(

r
N
∑

n=1
Wn

)
χ(UN6T )

]
+R+E

[(
c

η

∑
n=1

(ξn−1)

)
χ(UN>T )

]
−E

[(
r

η

∑
n=1

Wn

)
χ(UN>T )

]
+ cpE(Z)


E(W )

=


cλ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1−p)

α2n−1
0

+ p
]
− r

N

∑
n=1

λ

pn

∫ T

o
udFN(u)+R+

λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−2
0

]
− r

F(T )
F̄(T )

N−1

∑
n=1

λ

pn
[Fn(T )−FN(T )]+ cpτ


E(W )

(7)

Theorem 4.2 For the model described in section 2 , the long run average cost per
unit time under the bivariate replacement policy (T+,N) for a simple degenerative
repairable is given by

C (T+,N)=


[

cλ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]]
−

[
r

N

∑
n=1

λ

pn

∫ T

o
udFN(u)

]
+

λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−2
0

]
− r

F(T )
F̄(T )

N−1

∑
n=1

λ

pn
[Fn(T )−FN(T )]+R+ cpτ




N

∑
n=1

λ

pn

∫ T

o
udFN(u)+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )(1− p)

α2n−1
0

+ p

]
+

F(T )
F̄(T )

N−1

∑
n=1

λ

pn
[Fn(T )−FN(T )]+λ

[
F1(T )+

∞

∑
n=2

Fn+1(T )

α2n−2
0

]
+ τ


(8)

Deductions

The long run average cost C (T+,N) is a bivariate function in T+ and N. Obviously,
when N is fixed, C (T+,N) is a function of T+.

For fixed N = m, it can be written as

C (T+,N) =Cm(T+), m = 1,2, . . . .
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Thus, for a fixed m, we can find T+∗
m by analytical or numerical methods such

that Cm(T+∗
m) is minimized. That is, when N = 1,2, . . . ,m, . . . , we can find T+∗

1,
T+∗

2, T+∗
3,. . .T+∗

m ,. . . respectively, such that C1(T+∗
1),C2(T+∗

2), . . . ,Cm(T+∗
m), . . . are

minimized. Because the total life -time of a multistate degenerative system is
limited, the minimum of the long-run average cost per unit time exists. So we
can determine the minimum of the long-run average cost per unit time based on
C1(T+∗

1),C2(T+∗
2), . . . ,Cm(T+∗

m), . . . . Then, if the minimum is denoted by Cn(T+∗
n), we

obtain the bivariate optimal replacement policy (T+,N)∗ such that

C ((T+,N)∗) = min
N

Cn(T+∗
n)

= min
N

[min
T+

C(T+,N)]

≤C(∞,N)

≡C(N∗)

the optimal policy (T+,N)∗ is better than the optimal policy N∗. Moreover, under
some mild conditions, an optimal replacement policy N∗ is better than the optimal
policy T+∗. so under the same conditions, an optimal policy (T+,N)∗ is better than
the optimal replacement policies N∗ and T+∗.

5 Conclusion
In this paper, we have considered an extreme shock maintenance model for a

degenerative simple repairable system. Explicit expression for the long run average
cost under the bivariate replacement policy (T,N) and (T+,N) is derived. The
existence of optimal value of (T,N) and (T+,N) is deduced.
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