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Abstract

Graph labeling, which assigns values to the vertices and edges of a graph under specific

conditions, has significant applications in real-world problems such as coding theory, radar code

design, synch-set codes, missile guidance, and convolution codes with optimal error-correction

properties. This study explores the connections between graph labeling and solutions of

difference equations by constructing infinite graphs from sequences of real or complex numbers.

Each solution of a difference equation induces a labeled graph in the complex plane, where

vertex functions extend naturally to edge functions through binary operations over the

complex field. Furthermore, the use of complex plane labeling provides a framework for

visualizing higher-dimensional relationships in two-dimensional settings, enriching the structural

understanding of labeled graphs and their diverse applications.

Key words: Graphs labeling, Difference Equations, Convergent Digraphs, Tensor product,

Rotatory Graphs.
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1 Introduction

Graphs labeling, when the vertices and edges assigned values subject to certain

conditions have often been motivated by practical problems. Labeled graphs serves as

useful mathematical models for a broad range of applications such as coding theory

including the design of good radar type codes, synch-set codes, missile guidance

codes and convolution codes with optimal auto correction properties. A systematic

presentation of diverse applications of graph labeling is presented in [5]. For a given

sequence {xn}∞n=1 of real or complex numbers, it is natural to construct a graph
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G with vertex set V (G) = {xn} and each pair (xn, xn+1) is connected by an edge

en, ie E(G) = {en = xnxn+1, n = 1, 2, . . .}. If a graph G contains either infinitely

many vertices or infinitely many edges, then the graph G is called infinite Graph [9].

Solution of a difference equation is a sequence of real of complex numbers satisfying

the given difference equation (see [1],[15],[16],[16]). Hence each solution of difference

equation induces a graph in the complex plane. Given a graph G=(V,E), the set

C of complex numbers and a commutative binary operation ∗ : C × C → C, every

vertex function f : V (G) → C induces an edge function gf : E(G) → C such that

gf (u, v) = f(u) ∗ f(v) for all uv ∈ E(G)(see [22]). Since every 3 - D diagram is

displayed in a two dimensional screen, we take the label set as the subset of two

dimensional complex plane.

2 Preliminaries of Tensor Product

Definition 2.1 In graph theory, the tensor product G×H of graphs G and H is

a graph such that

1.The vertex set of G×H is the cartesian product V (G)× V (H).

2.Any two vertices (u, u′) and (v, v′) are adjacent in G×H iff u′ is adjacent with v′

and v is adjacent with v.

The tensor product is also called the direct product, categorical product,

cardinal product, relational product, kronecker product, weak direct

product (or) conjection. As on operation on binary relations, the tensor product

was introduced by Alfred north whitehead and Bertrand Russell in their principia

Mathematica(1912). It is also equivalent to the Kronecker product of the adjacency

matrices of the graphs (Weichsel 1962).

The notation G×H is also sometimes used to refer to the cartesion product of

graphs, but more commonly refers to the tensor product. The cross symbol shows

visually the two edges resuliting from the tensor product of two edges.

3 Properties of tensor product

The tensor product is the category-theoretic product in the category of graphs

and graph homomorphisms. That is, there is a homomorphism from G×H to G and

to H (given by projection onto each coordinate of the vertices) such that any other

graph that has a homomorphism to both G and H has a homomorphism to G × H
that factors through the homomorphisms to G and H.

The adjacency matrix of G×H is the tensor product of the adjacency matrices
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of G and H.

If a graph can be represented as a tensor product, then there may be multiple

different representations (tensor products do not satisfy unique factorization) but

each representation has the same number of irreducible factors. Imrich(1998) gives

a polynomial time algorithm for recognizing tensor product graphs and finding a

factorization of any such graph.

If either G (or)H is bipartite, then so is their tensor product G×H is connected

if and only if both factors are connected and atleast one factor is nonbipartite. The

tensor product K2 × G is sometimes called the double cover of G;if G is already

bipartite, its double cover is the disjoint union of two copies of G.

The Hedetniemi conjecture gives a formula for the chromotic number of a tensor

product.

4 Convergent Digraphs

Definition 4.1 Let G0 be an infinite digraph whose vertex set V (Go) ⊂ L. A finite

set {voi}`i=1 ⊂ L is said to be a limiting set of V (Go) if for any ε > 0 there exist

a vertex vεi ∈ Nε(voi)
⋂
V (Go) and a directed path starting from each vertex vx ∈{

V (Go)−
⋃̀
i=1

Nε(voi)

}
to vεi for i = 1, 2, 3, ...`. Then G = Go ∪ {voi}`i=1 is called a

convergent digraph.

Definition 4.2 If V (Gi) ⊆ V (Gj) and E(Gi) ⊆ E(Gj), then we say that Gi ⊆ Gj.

Let G1 ⊆ G2 ⊆ ...Gn ⊆ Gn+1 ⊆ .... be an increasing sequence of digraphs. The

smallest convergent digraph G ⊇
⋃
Gi is called maximal limiting digraph. If

g1 ⊇ g2 ⊇ ...gn ⊇ gn+1 ⊇ .... is a decreasing sequence of digraphs, then the largest

convergent digraph g ⊆
⋂
Gi is called minimal limitting digraph.

Theorem 4.3 If G is an infinite convergent digraph with limiting set {voi}`i=1 ⊂ L,

then there exists an increasing sequence of digraphs {Gn}∞n=1 whose maximal limiting

digraph is G and a decreasing sequence of digraphs {gn}∞n=1 whose minimal limiting

digraph is Kc
` .

Proof: Let N 1
n
(voi) ⊂ L be the 1

n
-neighbourhood of the vertex voi.

Define Gn = G−
[
V (G)

⋂{⋃̀
i=1

N1/n (voi)

}]
for n = 1, 2, 3, ... and

gn = G −
[
V (G)

⋂{⋃̀
i=1

N1/n (voi)

}c]
where the complementation is the usual.

Journal of Computational Mathematica Page 17 of 21



2456-8686, ix(ii), 2025:015-021
https://doi.org/10.26524/cm214

Then {Gn}∞n=1 and {gn}∞n=1 are respectively increasing and decreasing sequences of

digraphs. Since Gn → G − {voi}`i=1 and gn → {voi}`i=1 as n → ∞, the proof follows

from the definitions 4.1 and 4.2.

Theorem 4.4 For a given finite set {voi}`i=1 ⊂ R ∪ C there exists a convergent

digraph G with an increasing sequence of digraphs {Gn}∞n=1 and a decreasing sequence

of digraphs {gn}∞n=1 such that the maximal limiting digraph of {Gn}∞n=1 is G and the

minimal limiting digraph of {gn}∞n=1 is Kc
` .

Proof: The digraph G with V (G) =
⋃̀
i=1

{
{voi}

∞⋃
r=1

{
voi + 1

r

}}
and

E(G) =
⋃̀
i=1

[{
voi → vo(i+1)

}
∪
{(
voi + 1

r

)→← (voi + 1
(r+1)

)}∞

r=1

]
satisfies the condi-

tions of Theorem 4.4 and hence the proof follows.

5 Rotatory Graphs of Difference Equations

Definition 5.1 If ` and n are positive integers, then the equation

f(k, v(k), v(k + `), ..., v(k + n`)) = 0 (1)

is called a generalised difference equation. Let {v(k)}∞k=1 be a solution of the

eqn.(1). The digraph G with V (G) = {v(k)}∞k=1 and E(G) = {v(k)→ v(k + 1)}∞k=1

is called solution graph of equation (1). Finite union of solution graphs of equation

(1) is called difference equational digraph.

Definition 5.2 Let V (GR) = {v(k)}`k=1 ⊂ L, v(`+ 1) = v(1) and

Erot(GR) = {v(k)→ v(k + 1)}`k=1. The digraph GR = [V (GR), nErot(GR)], having

’n’ times Erot(GR) as edge set is called n-rotatory block of length ` and n (n may be

∞) is called multiplicity of the rotatory block. Union of finite number of rotatory

blocks, union of finite number of rotatory blocks of same length and union of finite

number of finite-rotatory blocks of same length as well as same multiplicity are called

rotatory, uniform rotatory and regular rotatory graphs respectively.

Lemma 5.3 For a given uniform rotatory digraph G of length 2`, there exists

finite number of distinct sequences of complex numbers, {vr(k)}∞k=1 for r = 1, 2, ...n

associated with the labels of vertices of G and satisfying the conditions
vr(k)

vr(k+`) = -1 for k = 1, 2, 3, ...∞ and r = 1, 2, 3, ...n.
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Proof: By defnition 5.2, G =
n⋃
r=1

[V (GRr),mrErot(GRr)]. The proof follows by taking

vr(k) = re
iπk
` and V (GRr)= {vr(k)}2`k=1.

Definition 5.4 Let Gs = [V (Gs), E(Gs)] be a digraph. If there exists a positive

integer m and a sequence {v(k)} ⊂ C associated with the labels of V (Gs) such that
v(k)

v(k+m)< 0 for all k and E(Gs) is of the form {v(k)→ v(k + 1)}, then the digraph

Gs is called spiral branch of length 2m. The spiral branch of length 2 is called

oscillatory branch. Union of finite number of spiral branches is called spiral

graph.

6 Conclusion

The solutions of difference equations provide a powerful bridge between discrete

dynamical systems and graph theory. By representing solutions as sequences and

mapping them onto vertices and edges, one can construct infinite or finite graphs

that capture the structural and functional properties of the underlying equations.

This correspondence not only enriches the study of graph theory but also facilitates

applications in areas such as network modeling, coding theory, and computational

mathematics, where the dynamics of sequences naturally translate into graph-based

representations.
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