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Abstract

In this paper, we consider on a multistate degenerative system with k working states and

l-failure states and study the maintenance problems under various bivariate replacement polices

(T,N), (T+, N), (U,N), (U−, N). The long-run average cost of a multistate degenerative system

is calculated. Under the afore-mentioned bivariate replacement policies under partial product

process optimality in inferred. In this study, the results developed are strengthened with

numerical examples.

Key words: Partial Product Process, Replacement Policy, Renewal Reward Process and

Virtual Repair Time.
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1 Introduction

In practical scenario, because of the effect of aging and accumulated deteriora-

tion, the systems are categorized as degenerative in the sense that the succeeding

work duration between failure become smaller and smaller, whereas the succeeding

out-of-order maintenance repair durations are greater and greater. In otherwords,

the successive operating times are dissipating, while the consecutive repair times are

cycling to infinity with a stochastically increased average. To model a deteriorating

system, with this kind of characteristics, Lam (1988) has introduced a Geometric

processes and studied replacement problems. Stadje and Zuckerman (1990) have

introduced a general monotone process repair model that generalised Lam’s work

other research works on the geometric process model include Stadje and Zuckerman

(1992), Stanley (1993) for repair replacement models, Revathy (1997) for optimal
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replacement policies for stochastic system and Thangaraj and Rizwan (2001) for

burn-in and maintenance models.

This study derives the long-run average costs for multistate degenerative systems

under four bivariate replacement policies with partial product process:

• (T,N) policy : Replace the system after a fixed working age (T) or upon N-th

failure

• (U,N) policy : Replace the system after cumulative repair time (U) or upon

N-th failure

• (T+, N) policy : Replace the system at the first failure point after cumulative

operating time exceeds T or upon N-th failure

• (U−, N) policy : Replace the system at the failure point just before total repair

time exceeds U or upon N-th failure.

In reliability theory, one assumes that every component of the system works

perfectly or is completely failed. This binary thinking does not hold up to scrutiny

because a system can have more than just two states. For example, a microwave

transmitter may be considered to be operating with full transmission range, operating

with degraded transmission range, or completely failed. An example of failure

contribution would be a special type of multistate system that has multiple distinct

failures. Another example is a home security system that can be tampered with

mechanically or electrically and also create false alarms when cats are detected in

the house. Lesanovsky (1993) has provided a review of research on systems with

dual failure modes. Zhang (1994), has introduced a bivariate optimal replacement

policy for a two-state repairable system. Babu, Govindaraju and Rizwan (2018)

introduced and studied replacement models where the consecutive repair time follow

an increasing partial product process. Raajpandiyan, Syed Tahir Hussainy and

Rizwan (2022) have studied optimal replacement models under partial product

process.

In general, system may have one functional state and two distinct failure states.

More generally, the system may have k-unique operating states and l-distinct failure

states. For a multi-component system with (k+l) states namely k-working states and

l-failure states, this research focuses on a monotone process model. Such a model can

be constructed in a number of ways to fit the description of a multistate degenerative

system.

The rest of the paper is organized as follows. In Section 2, we give a general
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preliminaries. In Section 3, given model assumptions. We also present the monotone

process model of a multi-component multistate system and the relevant results

regrading their probability structure. In Section 4, We derive explicit expressions

for the long-run average cost per unit time for this model under different bivariate

replacement policies. Finally, a conclusion in given section 5.

2 Preliminaries

First, we provide a few definitions in this section. The model of a multi-component

multistate system is then explained. In light of the system’s current state, we

additionally assess the conditional probabilities of the operating and failure times.

Definition 2.1 (Barlow and Proschan,1965) A random variable X is said to

be stochastically smaller than anther random variable Y, if P (X > α) ≤ P (Y > α),

for all real α. It is denoted by X ≤st Y .

Definition 2.2 A stochastic process Xn, n = 1, 2, · · · is said to be stochastically
increasing, if Xn ≤st Xn+1, for n = 1, 2, · · · .

Definition 2.3 (Shaked and Shanthikumar, 1994) A Markov process

Xn, n = 1, 2, · · · with state space 0, 1, 2, · · · is said to be Stochastically Monotone, if

(Xn+1 | Xn = i1) ≤st (Xn+1 | Xn = i),

for any 0 ≤ i1 ≤ i2

Clearly, the stochastically monotone concept for a Markov process is defined for a

Markov process and is based on the transition probabilities from one state to another

state, conditioning on the former state. However, the stochastically monotone concept

for a stochastic process defined here is for a general process and is based on the

conditional distribution of the successive random variable in the process.

Definition 2.4 An integer valued random variable N is said to be a stopping time

for the sequence of independent random variables X1, X2, · · · , if the event {N = n}
is independent of Xn+1, Xn+2, · · · , for all n = 1, 2, · · · .
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Definition 2.5 (Babu, Govindaraju and Rizwan, 2018) Let {Xn, n =

1, 2, 3, · · · } be a sequence of independent and non-negative random variables and let

F (X) be the distribution function of X1. Then {Xn, n = 1, 2, 3, · · · } is called partial
product process, if the distribution function of Xi+1 is F (αiX) (i = 1, 2, 3, · · · ),
where αi > 0 are real constants and αi = α0α1α2 · · ·αi−1.

Definition 2.6 (Renewal process) If the sequence of nonnegative random variable

{X1, X2, X3, · · · } is independent and identically distributed, then the counting

process {N(t), t ≥ 0} is said to be a renewal process.

Definition 2.7 A life distribution F is said to be new better then used in

expectation, if ∫ ∞
0

F (t+ x)dx ≤ F (t)

∫ ∞
0

F (x)dx

for all t ≥ 0.

To say that the life distribution of an item is new better then used in expectation is

equivalent to saying that the mean life length of a new item is greater than the mean

residual life length of a non-failed item of age t > 0.

Definition 2.8 At every failure point, a decision is taken whether it can be sent for

repair. If the cumulative repair time after this repair is expected to exceed a threshold

value δ, the repair need not be initiated at that failure time, such a fictitious repair

time is called a Virtual Repair Time.

Definition 2.9 A partial product process is called a decreasing partial product

process, if α0 > 1 and is called an increasing partial product process, if

0 < α0 < 1.

Remark 2.10 It is clear that if α0 = 1, then the Partial Product Process is a Renewal

Process.

Remark 2.11 let E(Y1) = µ, var(Y1) = σ2. Then for j = 1, 2, 3, · · · ,
E(Yj+1) = µ

β2j−1
0

and var(Yj+1) = σ2

β2j
0

, where β0 > 0.

Journal of Computational Mathematica Page 4 of 24



2456-8686, x(i), 2026:001-024
https://doi.org/10.26524/cm223

Theorem 2.12 (Wald’s equation) If X1, X2, X3, · · · are independent and identi-

cally distribution random variables having finite expectations and if N is the stopping

time for X1, X2, · · · such that E[N ] <∞, then

E

[
N∑
n=1

Xn

]
= E[N ]E[X1]

Theorem 2.13 (Wald’s equation for partial product process) Suppose that

{Yn, n = 1, 2, 3, · · · } forms a partial product process with ratio β0 and E[Y1] = µ <∞,

then for t > 0, we have

E
[
Vω(t)+1

]
= µE

1 +

ω(t)+1∑
j=2

1

β2j−2

0


where ω(t) is the counting process which represents the number of occurrences of an

event up to time t.

3 Model Assumptions

We shall now describe the system states. Consider a multistate system with

(k + l)-states having k-working states and l-failure states. The system state at time

t is given by

S(t) =

i if the system is in the i-th working state at time t (i = 1, 2, · · · , k)

k + j if the system is in the j-th working state at time t (j = 1, 2, · · · , l)

In a new system, the set of working states is Ω1 = {1, 2, · · · , k}, and the set of failure

states is Ω2 = {k + 1, k + 2, · · · , k + l} and the state space in Ω = Ω1 ∪ Ω2. In the

beginning, suppose a brand new system at state 1 that is working is installed. It will

be repaired, if the system fails. Let tn be the completion time of the n-th repair,

n = 0, 1, · · · with t0 = 0 and let sn be the time of occurrence of the n-th failure,

n = 1, 2, · · · . then

t0 < s1 < t1 < ... < sn < tn < · · · < sn+1 < · · · ,

we next describe the probability structure of the model.

Assume that the transition probability from working state i, i = 1, 2, · · · , k, to failure

Journal of Computational Mathematica Page 5 of 24



2456-8686, x(i), 2026:001-024
https://doi.org/10.26524/cm223

state k + j, j = 1, 2, · · · , l, is given by

P (S(sn+1) = k + j | S(tn) = i) = qj

with
l∑

j=1

qj = 1. Moreover, the transition probability from failure state k + j, j =

1, 2, · · · , l, to working state i, i = 1, 2, · · · , k is given by

P (S(tn) = i | S(sn) = k + j) = pi

with
k∑
j=1

Pj = 1.

Let X1 be the operating time of the system after installation. Let Xn, n = 2, 3, · · ·
be the operating time of the system after (n-1)-st repair and Yn, n = 1, 2, · · · be the

repair time after n-th failure. Assume that there exists a life distribution Ui(t) and

ai > 0, i = 1, 2, · · · , k such that

P (X1 ≤ t) = U1(t) (1)

and

P (X2 ≤ t | S(t1) = i) = U1(ait), (2)

i = 1, 2, · · · , k, where 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak.

In gerenal, ij ε {1, 2, · · · , k}, we have

P (Xn ≤ t | S(t1) = i1, · · · , S(tn−1) = in−1) = U1(ai, · · · , ain−1t), (3)

j = 1, 2, ..., n− 1.

Similarly, assume that there exist a life-time distribution Vi(t) and

bi > 0, i = 1, 2, · · · , l such that

P (Y1 ≤ t | S(s1) = k + i) = V1(b1t) (4)

where 1 ≥ b1 ≥ b2 ≥ · · · ≥ bl > 0 and in general, for ij ε {1, 2, ..., l}

P (Yn ≤ t | S(s1) = k + i1, · · · , S(sn) = k + in) = V1(bi1 · · · bint) (5)

In particular, if a1 = b1 = 1, a2 = · · · = ak = a′ and b2 = · · · = bl = b′ then the

(k + l)-state system reduces to a two state system. In this case, the equations (3)
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and (5) become

P (Xn ≤ t) = U1((a
′)n−1t)

P (Yn ≤ t) = V1((b
′)nt),

respectively. Thus the sequence Xn, n = 1, 2, · · · from a partial product process with

ratio a′ > 1, while the sequence Yn, n = 1, 2, · · · from with ratio 0 < b′ < 1. In

this case, our model reduces to the model for the one component two state system

introduced by Babu, Govindaraju and Rizwan (2018).

Remarks

For two working states 1 ≤ i1 < i2 ≤ k, we have

(X2 | S(t1) = i2) ≤st (X2 | S(t1) = i1).

so working state i1 is better than working state i2, in the sense that, the system

in state i1, has a stochastically large operating time than it does in state i2.

Consequently, the k-working states are arranged in decreasing order, such that state

1 is the best working state and state k is the worst working state. Similarly for two

failure states k + i1, k + i2 such that k + 1 ≤ k + i1 < k + i2 ≤ k + l, we have

(Y1 | S(s1) = k + i1) ≤st (Y1 | S(s1) + k + i2).

Because the system in state k + i1 has a stochastically shorter repair time than it

does in states k + i2, the failure state k + i1 is therefore superior to the failure state

k + i2. As a result, the l failure states are also sorted in decreasing order, with the

best failure state being k + 1 and the worst failure state being k + l.

consider a monotone process model for a multistate system described in this section

and make the following package of assumptions, A1 - A8.

A1 At the beginning, a new simple repairable system is installed. The

(k + l)-possible states exist for the system, where state 1, 2, · · · , k indicate the

first working state, the second working state,· · · , k-th working state

respectively, and state (k + 1), (k + 2), · · · , (k + l) indicate the first failure

state, the second failure state,· · · and the l-th failure state of the system

respectively. These failures are stochastically occurring and mutually exclusive.
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A2 Whenever the system fails, it will be either repaired or replaced. The system

will be replaced by an identical new one some times later.

A3 Let X1 be the system’s operating time after installation. Let Xn, n = 2, 3, · · ·
be the operating times of the system after the (n− 1)-st repair in a cycle. The

distribution of Xn is indicated by Fn(.). Assume that E(X1) = λ > 0.

Let Xi+1 be the operating time after the i-th repair, for i = 1, 2, 3, · · · . Then

the distribution function of Xi+1 is F (α2i−1

0 x), where α0(> 1) is a constant.

Now

E(Xi+1) =
λ

α2i−1

0

for i = 1, 2, 3, · · · . The successive operating time Xn, n = 1, 2, 3, · · · after repair

constitute a decreasing partial product process.

A4 After the initial failure, let Y1 represent the repair time and G(y) represent the

distribution function of Y1. Assume that E(Y1) = µ ≥ 0. When µ = 0, it

indicates that the anticipated repair time is negligibly small. After (j + 1)-st

failure, let Yj+1 be the repair time for j = 1, 2, 3, · · · and G(βj−10 y) be the

distribution function of Yj+1, where 0 < β0 ≤ 1 is a constant and E(Yj+1) = µ

β2j−1
0

for j = 1, 2, 3, · · · .
The sequential repair durations from an increasing partial product process are

{Yj, j = 1, 2, 3, · · · }.
A5 If the system in working state i is operating, then let the reward rate be r. The

replacement cost comprises two parts one part is the basic replacement cost R

and the other proportional to the replacement time z at rate cp. If the system

in failure state (k+i) is under repair, the repair cost is c. In otherwords, the

replacement cost is given by R + cpZ.

A6 Assume that 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak and 1 ≥ b1 ≥ b2 ≥ · · · ≥ bl > 0.

A7 Assume that Fn(t) be the cumulative distribution of Ln =
n∑
i=1

Xi and Gn(t) be

the cumulative distribution of Mn =
n∑
i=1

Yi.

A8 The working time Xn, the repair time Yn and the replacement time Z, (n =

1, 2, · · · ) are independent random variables.

4 Bivariate Replacement Policies

4.1 The Bivariate Policy (T,N)
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Here, we define and examine a bivariate replacement policy (T,N) under partial

product process for the multistate degenerative system, where the system is replaced

the at working age T or at the time of N-th failure, whichever occurs first. The

problem is to determine an optimal replacement policy (T,N)∗ so that the long-run

average cost per unit time is minimized.

The working age T of the system at time t is the cumulative life-time given by

T (t) =

t−Mn, : Ln +Mn 6 t < Ln+1 +Mn

Ln+1, : Ln+1,+Mn 6 t < Ln+1 +Mn+1.

Initially let Ln =
n∑
i=1

Xi and Mn =
n∑
j=1

Yj and L0 = M0 = 0.

Following Lam (2005), the distribution of the survival time Xn in A3 and the

distribution of the repair time Yn in A4 are given by

P (Xn ≤ t) =
∑

∑k
i=1 ji=n−1

(n− 1)!

i1!i2! · · · ik!
pi11 · · · p

ik
k U(ai11 · · · a

ik
k )t (6)

where j1, j2, · · · , jkεz+ and

P (Yn ≤ t) =
∑

∑l
i=1 ji=n

(n)!

j1!j2! · · · jl!
qj11 · · · q

jl
l V (bj11 · · · b

jl
l )t (7)

where j1, j2, · · · , jl ∈ Z+ and if E(X1) = λ, then the mean survival time is

E(Xn) =
λ

α2n−1

0

(8)

for n > 1, where

a =

(
k∑
i=1

pi
ai

)−1
(9)

and if E(Y1) = µ, then the mean repair time is

E(Yn) =
µ

β2n−1

0

(10)
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for n > 1, where

b =

(
l∑

j=1

qj
bj

)−1
. (11)

4.1.1 The length of a cycle and its mean

Then length of a cycle under the bivariate replacement policy (T,N) with partial

product process is

w =

(
T +

η∑
i=1

Yi

)
χ(LN > T ) +

(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(LN ≤ T ) + Z,

here the number of failures before the overall repair time above T is denotes by

η = 1, 2, · · · , N − 1.

χ(A) =

1 : if the even A occurs

0 : if the even A does not occur.

Denotes the indicator function and E[χ(A)] = P (A).

From Leung (2006), we have

E[χ(Li ≤ T < Ln] = P (Li ≤ T < LN)

= P (Li ≤ T )− P (LN ≤ T )

= Fi(T )− FN(T ).

Lemma 4.1 The mean length of a cycle under the policy (T,N) is

E(W ) =

∫ T

0

FN(u)du+
N−1∑
i=1

µ

β2i−1

0

Fi(T ) + τ (12)
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Proof: Examine

E(w) = E
[(
T +

η∑
i=1

Yi

)
χ(LN > T )

]
+ E

[( N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(LN ≤ T )

]
+ E(Z)

= E[T χ(LN > T )] + E
[( η∑

i=1

Yi

)
χ(LN > T )

]
+ E

{
E
[( N∑

i=1

Xi +
N−1∑
i=1

Yi

)
χ(LN ≤ T )

∣∣ LN = u
]}

+ E(Z)

= TFN(T ) +
N−1∑
i=1

µ

β2 i−1

0

E
[
χ(Li ≤ T < LN)

]
+

∫ T

0

u dFN(u)

+

∫ T

0

N−1∑
i=1

Yi dFN(u) + τ

= TFN(T ) +
N−1∑
i=1

µ

β2 i−1

0

P (Li < T < LN) +

∫ T

0

u dFN(u) +

N1∑
i=1

µ

β2 i−1

0

FN(T ) + τ

= TFN(T ) +

∫ T

0

u dFN(u) +

N1∑
i=1

µ

β2 i−1

0

[Fi(T )− FN(T )]

+

N1∑
i=1

µ

β2 i−1

0

FN(T ) + τ

=

∫ T

0

FN(u) du+
N−1∑
i=1

µ

β2 i−1

0

Fi(T ) + τ.

as desired and this completes the proof of the lemma �

4.1.2 The long-run average cost under policy (T,N)

The long-run average cost under policy (T,N) let take T1 as the first replacement

time. From this, we can derive Tn(n ≥ 2) as time taken between (n − 1)-st and

n-th replacement. The sequence Tn, n = 1, 2, · · · , forms a renewal process. The

inter-arrival time between two consecutive replacement is known as a renewal cycle.

In the renewal reward theorem by Ross (1996), the long-run average cost per unit

time under the multistate bivariate replacement policy (T,N) with partial product
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process is

C (T,N) =
the expected cost incurred in a cycle

the expected length of a cycle

=


E

{(
c

η∑
i=1

Yi − rT

)
χ(LN > T )

}
+ cpE(Z)

+E

{(
c
N−1∑
i=1

Yi − r
N∑
i=1

Xi

)
χ(LN ≤ T )

}
+R


E(W )

After simplifying, we assume to the following result using lemma 4.1.

Theorem 4.2 The long run average cost per unit time for a multistate degenerative

system under the bivariate replacement policy (T,N) under partial product process

for the model outlined in section 3 under the A1 through A8 is provided by.

C (T,N) =

(
N−1∑
i=1

µ

β2i−1

0

Fi(T )

)
c−

(∫ T

0

FN(u)du

)
r +R + cpτ

∫ T
0
FN(u)du+

N−1∑
i=1

µ

β2i−1

0

Fi(T ) + τ

(13)

4.1.3 Deductions

The long-run average cost C (T,N) is a bivariate function in T and N. Obviously,

when N is fixed, C (T,N) is a function of T. For fixed N=m, it can be written as

C (T,N) = Cm(T ),m = 1, 2, · · · .

Thus, for a fixed m, we can find T ∗m by analytical or numerical methods such that

Cm(T ∗m) is minimised. That is, when N = 1, 2, · · · ,m, · · · , we can find

T ∗1 , T
∗
2 , · · · , T ∗m, · · · , respectively, such that the corresponding,

C1(T
∗
1 ), C2(T

∗
2 ), · · · , Cm(T ∗m), · · · , are minimised. Because the total lifetime of a
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multistate degenerative system is limited, the minimum of the long-run average cost

per unit time exists. so, we can determine the minimum of the long-run average

cost per unit time based on C1(T
∗
1 ), C2(T

∗
2 ), · · · , Cm(T ∗m), · · · .Then, if the is denoted

by Cn(T ∗n), we obtain the bivariate optimal replacement policy (T,N)∗ such that

C ((T,N)∗) = min
n
Cn(T ∗n)

= min
n

[min
T

C (T,N)]

≤ C (∞, N)

= C(N∗)

The optimal policy (T,N)∗ is better than the optimal policy N∗. moreover, under

some mild conditions the optimal replacement policy N∗ is better than the optimal

policy T ∗. So under the same conditions, an optimal policy (T,N)∗ is better than

the optimal replacement policies N∗ and T ∗.

4.2 The Bivariate Policy (U,N)

Here, we define and examine a bivariate replacement policy (U,N) with partial

product process for the multistate degenerative system, where the system is replaced

when the system is at N-th failure or the overall time to repair is exceeds U, whichever

comes first. The problem is to select an optimal replacement policy (U,N)∗ so that

the long-run average cost per unit time is minimised.

4.2.1 The length of a cycle and its mean

The length of a cycle W under the bivariate replacement policy (U,N) with partial

product process is

W =

(
η∑
i=1

Xi + U

)
χ(MN > U) +

(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(MN ≤ U) + Z,
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Where the number of failures before the overall repair time above U is denoted by

η = 1, 2, · · · , N − 1 and χ(.) denotes the indicator function.

χ(A) =

1 : if the event A occurs

0 : if the event A does not occur.

Lemma 4.3 The mean length of the cycle under policy the (U,N) is

E(W ) =

∫ U

0

GN(u)du+
λ

α2N−1

0

GN(U) +
N−1∑
i=1

λ

α2i−1

0

Gi−1(U) + τ (14)

Proof:

E(w) =

[(
η∑
i=1

Xi + U

)
χ(MN > U)

]
+ E

[(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(MN ≤ U)

]
+E(Z)

= E

[
η∑
i=1

Xiχ(MN>U)

]
+ E[Uχ(MN>U)]

+E

{
E

[(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(MN ≤ U) |MN = u

]}
+ E(Z)

= E

(
N∑
i=1

Xi

)
E[χ(MN ≤ U) +

∫ U

0

udGN(u)

+
N−1∑
i=1

E(Xi)E[χ(Mi−1 ≤ U < MN)] + UE[χ(MN > U)] + τ

=

∫ U

0

udGN(u) +
N∑
i=1

λ

α2N−1

0

GN(U) +
N−1∑
i=1

E(Xi)P (Mi−1 ≤ U < MN)

+UGN(U) + τ

=

∫ U

0

udGN(u) +
N∑
i=1

λ

α2N−1

0

GN(U) +
N−1∑
i=1

λ

α2i−1

0

[Gi−1(U)−GN(U)]

+UGN(U) + τ,

this provides equation (14) when simplified.
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4.2.2 The long-run average cost under policy (U,N)

The long-run average cost under policy (U,N) let take U1 as the first replacement

time. From this, we can derive Un(n ≥ 2) as time taken between (n − 1)-st and

n-th replacement. The sequence Un, n = 1, 2, · · · forms a renewal process. The

inter-arrival time between two consecutive replacement is known as a renewal cycle.

The long-run average cost per unit time under the multistate bivariate replacement

policy (U,N) with partial product process is

C (U,N) =
the expected cost incurred in a cycle

the expected length of a cycle

=


E

{(
cU − r

η∑
i=1

Xi

)
χ(MN > U)

}
+ cpE(Z)

+E

{(
c
N−1∑
i=1

Yi − r
N∑
i=1

Xi

)
χ(MN ≤ U)

}
+R


E(W )

After simplifying, we assume to the following result using lemma 4.2.

Theorem 4.4 The long run average cost per unit time for a multistate degenerative

system under the bivariate replacement policy (U,N) with partial product process for

the model outlined in section 3 under the A1 through A8 is provided by.

C (T,N) =

(∫ U

0

GN(u)du

)
c−

(
λ

α2N−1

0

GN(U) +
N−1∑
i=1

λ

α2i−1

0

Gi−1

)
r +R + cpτ

λ

α2N−1

0

GN(U) +
N−1∑
i=1

λ

α2i−1

0

Gi−1 +

∫ U

0

GN(u)du+ τ

(15)

4.2.3 Deductions

The long-run average cost C (U,N) is a bivariate function in U and N. Obviously,

when N is fixed, C (U,N) is a function of U. For fixed N=m, it can be written as

C (U,N) = Cm(U),m = 1, 2, · · ·
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Thus, for a fixed m, we can find U∗m by analytical or numerical methods such that

Cm(U∗m) is minimised. That is, when N = 1, 2, · · · ,m, · · · , we can find

U∗1 , U
∗
2 , · · · , U∗m, · · · , respectively, such that the corresponding,

C1(U
∗
1 ), C2(U

∗
2 ), · · · , Cm(U∗m), · · · , are minimised. Because the total lifetime of a

multistate degenerative system is limited, the minimum of the long-run average cost

per unit time exists. so, we can determine the minimum of the long-run average cost

per unit time based on C1(U
∗
1 ), C2(U

∗
2 ), · · · , Cm(U∗m), · · · .Then, if the is denoted by

Cn(U∗n), we obtain the bivariate optimal replacement policy (U,N)∗ such that

C ((U,N)∗) = min
m

Cm(U∗m)

= [min
U

C (U,N)]

≤ C (∞, N)

= C(N∗)

The optimal policy (U,N)∗ is better than the optimal policy N∗. moreover, under

some mild conditions the optimal replacement policy N∗ is better than the optimal

policy U∗. So under the same conditions, an optimal policy (U,N)∗ is better than

the optimal replacement policies N∗ and U∗.

4.3 The Bivariate Policy (T+, N)

It is a policy where the multistate degenerative system, where system replaced at

the initial failure point upon cumulative operating time exceeding T or at occurrence

of the N-th failure, which ever comes first, The method of replacement at the first

failure point one the total operating time is greater than a given value is employed

in Muth (1977).

4.3.1 The length of a cycle and its mean

The length of a cycle W under the bivariate replacement policy (T+, N) with partial

product process is

W =

(
η∑
i=1

Xi +

η∑
i=1

Yi−1

)
χ(LN > T ) +

(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(LN ≤ T ) + Z,

Where the number of failures before the overall repair time above T is denoted by

η = 1, 2, · · · , N − 1.
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P (η = j) = P (X1 ≤ T,X2 ≤ T, · · · , Xη−1 ≤ T,Xη > T ); j = 1, 2, · · ·
= F (T )F j−1(T ).

since η is a random variable,

E(η − 1) =
∞∑
j=1

(j − 1)P (η = j)

= F (T )
∞∑
j=1

(j − 1)F j−1(T )

=
F (T )

F (T )
.

Lemma 4.5 The mean length of the cycle under policy the (T+, N) is

E(W ) =
N−1∑
i=1

µ

β2i−1

0

[(1− b)FN(T ) + bFi(T )] +
F (T )

F (T )

N−1∑
i=1

λ

α2i−1

0

[(Fi(T )− FN(T )]

+

∫ T

0

udFN(u) + τ (16)

Proof: Examine

E(w) = E

[(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(LN ≤ T )

]
+ E

[(
η∑
i=1

Xi +

η∑
i=1

Yi−1

)
χ(LN > T )

]
+E(Z)

= E

{
E

[(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(LN ≤ T ) | LN = u

]}

+E

[
η∑
i=1

Xiχ(LN > T )

]
+ E

[(
η∑
i=1

Yi−1

)
χ(LN > T )

]
+ E(Z)
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=

∫ T

o

udFN(u) +

∫ T

o

N−1∑
i=1

E(Yi)dFN(u) +
N−1∑
i=1

µ

β2i−1

0

P (Li ≤ T < LN)

+
N−1∑
i=1

E(Xi | η = N − 1)P (Li ≤ T < LN)

+
N−1∑
i=1

E(Yi−1)E[χ(Li ≤ T < LN)] + τ

=

∫ T

o

udFN(u) +
N−1∑
i=1

µ

β2i−1

0

FN(T ) +
F (T )

F (T )

N−1∑
i=1

λ

α2i−1

0

[Fi(T )− FN(T )]

+
N−1∑
i=1

µ

β2i−1

0

[Fi(T )− FN(T )] + τ,

This provides equation (16) when simplified.

4.3.2 The long-run average cost under policy (T+, N)

The long-run average cost per unit time under the multistate bivariate replacement

policy (T+, N) under partial product process is

C (T+, N) =
the expected cost incurred in a cycle

the expected length of a cycle

=


E

{(
c

η∑
i=1

Yi − r
η∑
i=1

Xi

)
χ(LN > T )

}
+ cpE(Z)

+E

{(
c
N−1∑
i=1

Yi − r
N∑
i=1

Xi

)
χ(LN ≤ T )

}
+R


E(W )

After simplifying, we assume to the following result using lemma 4.3.
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Theorem 4.6 The long run average cost per unit time for a multistate degenerative

system under the bivariate replacement policy (T+, N) with partial product process

for the model outlined in section 3 under the A1 through A8 is provided by.

C (T+, N) =


(
N−1∑
i=1

µ

β2i−1

0

[(1− b)FN(T ) + bFi(T )]

)
c

+

(∫ T

0

udFN(u) +
F (T )

F (T )

N−1∑
i=1

λ

α2i−1

0

[Fi(T )− FN(T )]

)
r + cpτ +R



∫ T

o

udFN(u) +
F (T )

F (T )

N−1∑
i=1

λ

α2i−1

0

[Fi(T )− FN(T )]

+
N−1∑
i=1

µ

β2i−1

0

[(1− b)FN(T ) + bFi(T )] + τ


(17)

The process used to determine the optimal policy (T,N)∗ is also employed to obtain

the bivariate optimal replacement policy (T+, N)∗ with partial product process.

4.4 The Bivariate Policy (U−, N)

Under policy (U−, N) states that the multistate degenerative system will be

replaced at the failure point either upon the occurrence of the N-th failure, whichever

comes first, or just before the total repair time exceeds U.

4.4.1 Virtual Repair Times

In the policy (U−, N), an optimal policy might exist such that the system has to be

replaced in the mid of a repair time. The question naturally arises whether it would

not have been more beneficial to replace the system at the failure point itself as we

might have saved on the repair cost. If fact, Stadje and Zuckerman (1992) have

proved for their policy U that if Ys’s are new better then used in expectation, then

there does exist an optimal replacement policy which does not replace in the middle

of a repair period. Because since no additional cost is involved for replacing at

failure in our policies, the strategy of not replacing system components in the

middle of the operating cycle is economical.
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4.4.2 The length of a cycle and its mean

The length of a cycle W under the bivariate replacement policy (U−, N) with partial

product process is

W =

(
η∑
i=1

Xi +
v∑
i=o

Yi

)
χ(MN > U) +

(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(MN ≤ U) + Z,

where the number of failures before the overall repair time above U is denotes by

η = 1, 2, · · · , N − 1. and the number of repairs before the overall repair time above

U is denoted by v = 0, 1, 2, · · · , N − 1.

If Mi ≤ U < Mi+1 for i = 1, 2, · · · , N − 1, then U −Mi will be the virtual repair

time.

Lemma 4.7 The mean length of the cycle under policy (U−, N) is

E(W ) =

∫ U

0

udGN(u) +
G(U)

G(U)

N−1∑
i=1

µ

β2i−1

0

[Gi(U)−GN(U)] +
N−1∑
i=1

λ

α2i−1

0

Gi−1(U)

+
λ

α2N−1

0

GN(U) + τ. (18)

Proof. Consider

E(W ) =

[(
η∑
i=1

Xi +
v∑
i=o

Yi

)
χ(MN > U)

]
+ E

[(
N∑
i=1

Xi +
N−1∑
i=1

Yi

)
χ(MN ≤ U)

]
+E(Z),

=

∫ U

0

udGN(u) +
N∑
i=1

λ

α2N−1

0

GN(U) + E

[
η∑
i=1

Xiχ(MN>U)

]

+E

[
v∑
i=0

Yiχ(MN>U)

]
+ E(Z)
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=

∫ U

0

udGN(u) +
N∑
i=1

λ

α2N−1

0

GN(U) +
N−1∑
i=1

E(Xi)P [Mi−1 ≤ U < MN ]

+
N−1∑
i=0

E(Yi | v)P [Mi ≤ U < MN ] + E(Z)

=

∫ U

0

udGN(u) +
N∑
i=1

λ

α2N−1

0

GN(U) +
N−1∑
i=1

λ

α2i−1

0

[Gi−1(U)−GN(U)]

+
N−1∑
i=0

E(Yi)E(v − 1)[Gi(U)−GN(U)] + τ

=

∫ U

0

udGN(u) +
G(U)

G(U)

N−1∑
i=1

µ

β2i−1

0

[Gi(U)−GN(U)]

+
N∑
i=1

λ

α2N−1

0

GN(U) +
N−1∑
i=1

λ

α2i−1

0

[Gi−1(U)−GN(U)] + τ,

as desired and this completes the proof. �

4.4.3 The long-run average cost under the policy (U−, N)

The long-run average cost per unit time under the multistate bivariate replacement

policy (U−, N) with partial product process.

C (U−, N) =
the expected cost incurred in a cycle

the expected length of a cycle

=


E

{(
c

v∑
i=0

Yi − r
η∑
i=1

Xi

)
χ(MN > U)

}
+ cpE(Z)

+E

{(
c
N−1∑
i=1

Yi − r
N∑
i=1

Xi

)
χ(MN ≤ U)

}
+R


E(W )

After simplifying, we assume to the following result using lamma 4.4.
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Theorem 4.8 The long run average cost per unit time for a multistate degenerative

system under the bivariate replacement policy (U−, N) with partial product process

for the model outlined in section 3 under the A1 through A8 is provided by.

C (U−, N) =


(∫ U

0

udGN(u) +
G(U)

G(U)

N−1∑
i=1

µ

β2i−1

0

[Gi(U)−GN(U)]

)
c

−

(
N−1∑
i=1

λ

α2i−1

0

Gi−1(U) +
λ

α2N−1

0

GN(U)

)
r + cpτ +R




N−1∑
i=1

λ

α2i−1

0

Gi−1(U) +
λ

α2N−1

0

GN(U) +

∫ U

0

udGN(u)

+
G(U)

G(U)

N−1∑
i=1

µ

β2i−1

0

[Gi(U)−GN(U)] + τ


(19)

5 Conclusion

By considering a repairable system for a monotone process model of a

multi component multistate degenerative system, explicit expressions for the

long-run average cost per unit time under a bivariate replacement policies

(T,N), (U,N), (T+, N) and (U−, N) with partial product process have been derived.

Existence of optimal value of has been deduced. Numerical examples for some of

the aforesaid bivariate replacement policies are given to illustrate the models and

methodology developed in this paper.
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