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Abstract

In this paper, we consider on a multistate degenerative system with k working states and
[-failure states and study the maintenance problems under various bivariate replacement polices
(T,N),(T*,N),(U,N),(U”, N). The long-run average cost of a multistate degenerative system
is calculated. Under the afore-mentioned bivariate replacement policies under partial product
process optimality in inferred. In this study, the results developed are strengthened with
numerical examples.

Key words: Partial Product Process, Replacement Policy, Renewal Reward Process and
Virtual Repair Time.
AMS classification: 60K10, 90B25

1 Introduction

In practical scenario, because of the effect of aging and accumulated deteriora-
tion, the systems are categorized as degenerative in the sense that the succeeding
work duration between failure become smaller and smaller, whereas the succeeding
out-of-order maintenance repair durations are greater and greater. In otherwords,
the successive operating times are dissipating, while the consecutive repair times are
cycling to infinity with a stochastically increased average. To model a deteriorating
system, with this kind of characteristics, Lam (1988) has introduced a Geometric
processes and studied replacement problems. Stadje and Zuckerman (1990) have
introduced a general monotone process repair model that generalised Lam’s work
other research works on the geometric process model include Stadje and Zuckerman
(1992), Stanley (1993) for repair replacement models, Revathy (1997) for optimal
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replacement policies for stochastic system and Thangaraj and Rizwan (2001) for
burn-in and maintenance models.
This study derives the long-run average costs for multistate degenerative systems

under four bivariate replacement policies with partial product process:

e (T, N) policy : Replace the system after a fixed working age (T) or upon N-th
failure

e (U,N) policy : Replace the system after cumulative repair time (U) or upon
N-th failure

e (T, N) policy : Replace the system at the first failure point after cumulative
operating time exceeds T or upon N-th failure

e (U™, N) policy : Replace the system at the failure point just before total repair
time exceeds U or upon N-th failure.

In reliability theory, one assumes that every component of the system works
perfectly or is completely failed. This binary thinking does not hold up to scrutiny
because a system can have more than just two states. For example, a microwave
transmitter may be considered to be operating with full transmission range, operating
with degraded transmission range, or completely failed. An example of failure
contribution would be a special type of multistate system that has multiple distinct
failures. Another example is a home security system that can be tampered with
mechanically or electrically and also create false alarms when cats are detected in
the house. Lesanovsky (1993) has provided a review of research on systems with
dual failure modes. Zhang (1994), has introduced a bivariate optimal replacement
policy for a two-state repairable system. Babu, Govindaraju and Rizwan (2018)
introduced and studied replacement models where the consecutive repair time follow
an increasing partial product process. Raajpandiyan, Syed Tahir Hussainy and
Rizwan (2022) have studied optimal replacement models under partial product
process.

In general, system may have one functional state and two distinct failure states.
More generally, the system may have k-unique operating states and [-distinct failure
states. For a multi-component system with (k+1) states namely k-working states and
[-failure states, this research focuses on a monotone process model. Such a model can
be constructed in a number of ways to fit the description of a multistate degenerative
system.

The rest of the paper is organized as follows. In Section 2, we give a general
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preliminaries. In Section 3, given model assumptions. We also present the monotone
process model of a multi-component multistate system and the relevant results
regrading their probability structure. In Section 4, We derive explicit expressions
for the long-run average cost per unit time for this model under different bivariate

replacement policies. Finally, a conclusion in given section 5.

2 Preliminaries

First, we provide a few definitions in this section. The model of a multi-component
multistate system is then explained. In light of the system’s current state, we

additionally assess the conditional probabilities of the operating and failure times.

Definition 2.1 (Barlow and Proschan,1965) A random variable X is said to
be stochastically smaller than anther random variable Y, if P(X > a) < P(Y > «),
for all real a.. It is denoted by X <, Y.

Definition 2.2 A stochastic process X,,, n=1,2,--- is said to be stochastically
increasing, if X,, <, X,41,forn=1,2,---.

Definition 2.3 (Shaked and Shanthikumar, 1994) A Markov process
X,, n=1,2,--- with state space 0,1, 2, - - - is said to be Stochastically Monotone, if

(Xn—l—l | Xn - 11) Sst (Xn—l—l | Xn - Z):

for any 0 <47 <

Clearly, the stochastically monotone concept for a Markov process is defined for a
Markov process and is based on the transition probabilities from one state to another
state, conditioning on the former state. However, the stochastically monotone concept
for a stochastic process defined here is for a general process and is based on the
conditional distribution of the successive random variable in the process.

Definition 2.4 An integer valued random variable N is said to be a stopping time
for the sequence of independent random variables Xy, Xy, --- | if the event {N = n}
is independent of X, 1, X410, -+, foralln=1,2,---.

‘I")J ournal of Computational Mathematica Page 3 of



2456-8686, x(i), 2026:001-024
https://doi.org/10.26524 /cm223

Definition 2.5 (Babu, Govindaraju and Rizwan, 2018) Let {X,,n =
1,2,3,-- -} be a sequence of independent and non-negative random variables and let
F(X) be the distribution function of X;. Then {X,,,n =1,2,3,---} is called partial
product process, if the distribution function of X;;; is F(,X) (i = 1,2,3,--+),

where «; > 0 are real constants and a; = agajas - - - ;1.

Definition 2.6 (Renewal process) If the sequence of nonnegative random variable
{X1, X5, X3,---} is independent and identically distributed, then the counting
process {N(t),t > 0} is said to be a renewal process.

Definition 2.7 A life distribution F is said to be new better then used in
expectation, if

/0 T+ 2)de < F(t) /0 T Fo)ds

for all t > 0.
To say that the life distribution of an item is new better then used in expectation is
equivalent to saying that the mean life length of a new item is greater than the mean

residual life length of a non-failed item of age ¢ > 0.

Definition 2.8 At every failure point, a decision is taken whether it can be sent for
repair. If the cumulative repair time after this repair is expected to exceed a threshold
value 0, the repair need not be initiated at that failure time, such a fictitious repair
time is called a Virtual Repair Time.

Definition 2.9 A partial product process is called a decreasing partial product
process, if ag > 1 and is called an increasing partial product process, if
0<ay<l.

Remark 2.10 It is clear that if ag = 1, then the Partial Product Process is a Renewal
Process.

Remark 2.11 let E(Y;) = p, var(Yy) = o2. Then for j =1,2,3,---,
E(Y;11) = 5= and var(Yj1) = %, where 3y > 0.
0

=1
B

‘I")J ournal of Computational Mathematica Page 4 of



2456-8686, x(i), 2026:001-024
https://doi.org/10.26524 /cm223

Theorem 2.12 (Wald’s equation) If X;, X5, X3,--- are independent and identi-
cally distribution random variables having finite expectations and if N is the stopping
time for X, Xs,--- such that E[N] < oo, then

N

>,

n=1

E = FE[N|E[X}]

Theorem 2.13 (Wald’s equation for partial product process) Suppose that
{Y,,n=1,2,3,- -} forms a partial product process with ratio 5y and E[Y]] = u < o0,
then for ¢t > 0, we have

w(t)+1 1
E Vo] =nE |1+ Y —=
j=2 10

where w(t) is the counting process which represents the number of occurrences of an
event up to time t.

3 Model Assumptions

We shall now describe the system states. Consider a multistate system with
(k + [)-states having k-working states and [-failure states. The system state at time
t is given by

s ) if the system is in the i-th working state at time t (i = 1,2,--- , k)
k+ j if the system is in the j-th working state at time t (j = 1,2,--- 1)
In a new system, the set of working states is 0 = {1,2,--- |k}, and the set of failure

states is Qy = {k + 1,k + 2,--- ,k + [} and the state space in Q = ; U Qs. In the
beginning, suppose a brand new system at state 1 that is working is installed. It will
be repaired, if the system fails. Let ¢, be the completion time of the n-th repair,
n =0,1,--- with {5 = 0 and let s,, be the time of occurrence of the n-th failure,
n=1,2,---. then

to <81 <1 < ot. <8y <y <ove <8y < -0 e

we next describe the probability structure of the model.
Assume that the transition probability from working state i, i = 1,2,--- | k, to failure
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state k + 7,5 =1,2,--- ,[, is given by

P(S(sn1) = k43| S(tn) =) = g5

!
with ) ¢; = 1. Moreover, the transition probability from failure state k + j,j =
j=1
1,2,--- .1, to working state i, i = 1,2,--- , k is given by

P(S(t,) =i|S(sn) =k+j)=pi

k
with > P, = 1.
j=1
Let X be the operating time of the system after installation. Let X,,,n = 2,3,---

be the operating time of the system after (n-1)-st repair and Y,,,n = 1,2, -- be the
repair time after n-th failure. Assume that there exists a life distribution U;(t) and
a; >0,1=1,2,---  k such that

P(X, <t)="Uilt) (1)
and
1=1,2,--- Jk, where 1 < a1 <ay <--- < ay.
In gerenal, i; € {1,2,--- ,k}, we have
P(XTL S t | S(tl) - ila e 7S(tn—1) = 7:”_1> - Ul(ai7 e 7ain71t)7 (3)

j=1,2,..n—1.
Similarly, assume that there exist a life-time distribution V;(¢f) and
b; >0,i=1,2,--- 1 such that

P(Yy <t|S(s1) =k+1)=Vi(bit) (4)

where 1 > by > by > --- > b > 0 and in general, for i; € {1,2,....[}

P, <t|S(s1)=k+iy,---,5(sn) =k +in) = Vi(bi, - b, 1) (5)

In particular, if ay = by = 1,a9 = --- = a, = d and by = --- = by = I/ then the

(k + 1)-state system reduces to a two state system. In this case, the equations (3)

‘I")J ournal of Computational Mathematica Page 6 of



2456-8686, x(i), 2026:001-024
https://doi.org/10.26524 /cm223

and (5) become

P(X, <t) = Ui((@)"™)
P(Ya<t) = W(b)"),

respectively. Thus the sequence X,,,n =1,2,--- from a partial product process with
ratio ¢’ > 1, while the sequence Y,,,n =1,2,--- from with ratio 0 < ¢ < 1. In
this case, our model reduces to the model for the one component two state system
introduced by Babu, Govindaraju and Rizwan (2018).

Remarks

For two working states 1 < iy < iy < k, we have
(Xo | S(t1) =i2) < (X2 | S(t1) =11).

so working state 7; is better than working state 75, in the sense that, the system
in state 41, has a stochastically large operating time than it does in state is.
Consequently, the k-working states are arranged in decreasing order, such that state
1 is the best working state and state k is the worst working state. Similarly for two
failure states k 4+ i1, k+io such that k+1 < k+i; < k+ iy < k+ [, we have

(Y1 [ S(s1) =k +i1) <o (Y1 | S(s1) + K +i2).

Because the system in state k£ + 77 has a stochastically shorter repair time than it
does in states k + 75, the failure state k + i; is therefore superior to the failure state
k +i5. As a result, the [ failure states are also sorted in decreasing order, with the
best failure state being k£ + 1 and the worst failure state being k + .

consider a monotone process model for a multistate system described in this section
and make the following package of assumptions, Al - AS8.

Al At the beginning, a new simple repairable system is installed. The
(k + 1)-possible states exist for the system, where state 1,2,--- |k indicate the
first working state, the second working state,---, k-th working state
respectively, and state (k + 1), (k + 2),---,(k + ) indicate the first failure
state, the second failure state,--- and the [-th failure state of the system
respectively. These failures are stochastically occurring and mutually exclusive.
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A2

A3

A4

A5

A6
A7

A8

Whenever the system fails, it will be either repaired or replaced. The system
will be replaced by an identical new one some times later.

Let X, be the system’s operating time after installation. Let X,, n = 2,3,---
be the operating times of the system after the (n — 1)-st repair in a cycle. The
distribution of X, is indicated by F,(.). Assume that E(X;) =X > 0.

Let X;y1 be the operating time after the i-th repair, for ¢ = 1,2,3,---. Then
the distribution function of X, is F(a? ), where ag(> 1) is a constant.
Now
E(Xin) = %
0
for 1 =1,2,3, - . The successive operating time X,,, n =1,2,3,--- after repair

constitute a decreasing partial product process.

After the initial failure, let Y) represent the repair time and G(y) represent the
distribution function of Y;. Assume that E(Y;) = ¢ > 0. When p = 0, it
indicates that the anticipated repair time is negligibly small. After (j + 1)-st
failure, let Yjy; be the repair time for j = 1,2,3,--- and G(8] 'y) be the
distribution function of Yj,, where 0 < f; < 1is a constant and E (Y1) =
for j=1,2,3,---.

The sequential repair durations from an increasing partial product process are
;.7 =123}

If the system in working state i is operating, then let the reward rate be r. The

H 1
B8’

replacement cost comprises two parts one part is the basic replacement cost R
and the other proportional to the replacement time z at rate c,. If the system
in failure state (k+i) is under repair, the repair cost is ¢. In otherwords, the
replacement cost is given by R + ¢, 2.

Assume that 1 < a; < qay < --- < q and 121)12b22~~2nbl>0.

Assume that F,,(t) be the cumulative distribution of L,, = > X; and G,(t) be
i=1

n

the cumulative distribution of M,, = > Y;.
i=1
The working time X, the repair time Y,, and the replacement time Z, (n =

1,2,--+) are independent random variables.

4 Bivariate Replacement Policies

4.1 The Bivariate Policy (7, N)
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Here, we define and examine a bivariate replacement policy (7, N) under partial
product process for the multistate degenerative system, where the system is replaced
the at working age T or at the time of N-th failure, whichever occurs first. The
problem is to determine an optimal replacement policy (7', N)* so that the long-run

average cost per unit time is minimized.

The working age T of the system at time t is the cumulative life-time given by

t—M,, : Lp+M,<t< Lo+ M,

T(t) =
Ln+17 : Ln+1; +Mn < t < Ln+1 + Mn+1-

Initially let L,, = >~ X; and M,, = > Y; and Ly = My = 0.
i=1 j=1
Following Lam (2005), the distribution of the survival time X,, in A3 and the

distribution of the repair time Y,, in A4 are given by

n—1 : ; .
Past= 3 %Pf'“pk’“U(af---a;)t (6)
11:29:0 = U
Zf:lji:n_l
where ji, ja, -+ , ez and
n)! . . , ,
P <= 3 g gveg e 7)
Zl- j-:njl.jzu"]l.
where j1,jo, -, 71 € Z1 and if E(X;) = A, then the mean survival time is
A
E(Xn) = s (8)
Qgp

for n > 1, where

k -1
- (22) o

and if F(Y)) = u, then the mean repair time is

E(Y,) = —= (10)

on—1
0
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for n > 1, where

@L

) . (11)

4.1.1 The length of a cycle and its mean

(3

Then length of a cycle under the bivariate replacement policy (7', N) with partial
product process is

w= (T+ZY> (Ly >T)+ (ZXNLZYZ-) x(Ly <T)+ Z,
i=1 i=1
here the number of failures before the overall repair time above T is denotes by

n=1,2--,N—1.

1 : if the even A occurs
X(A) = )
0 : if the even A does not occur.

Denotes the indicator function and E[y(A)] = P(A).
From Leung (2006), we have

Ex(L; <T< L, = P(L;,<T< Ly)
= P(L;<T)—P(Ly<T)
= F(T) = Ex(T).

Lemma 4.1 The mean length of a cycle under the policy (T, N) is

E(W):/O du+z 221 7 (12)
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Proof: Examine

N-1

E(w) [<T+ZY> LN>T)]+E[(§:X,+ 1@) LN<T)}+E(Z)

=1 =1

— E[Tx(Ly > T)] + E[(i m)X(LN > T)}

N-1 T
= TFN(T)+ Y —h P(L <T<LN)+/ wdFy(u Z 221 Y7
i=1 10 0
- T
= TFN(T) +/ udFy(u) + Z 2 F(T) — Fx(T)]
=1
Ny i
+ Z 2i—1 N(T> + T
i=1 0
T N—-1
_/0 Fy(u)du+ Y L R(T) +7
i=1 "0
as desired and this completes the proof of the lemma |

4.1.2 The long-run average cost under policy (7, N)

The long-run average cost under policy (T, N) let take T} as the first replacement
time. From this, we can derive T,,(n > 2) as time taken between (n — 1)-st and
n-th replacement. The sequence T,,, n = 1,2,---, forms a renewal process. The
inter-arrival time between two consecutive replacement is known as a renewal cycle.
In the renewal reward theorem by Ross (1996), the long-run average cost per unit
time under the multistate bivariate replacement policy (7', N) with partial product
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process is

th ted cost i d i 1
(T, N) = e expected cost incurred in a cycle

the expected length of a cycle

EW)
After simplifying, we assume to the following result using lemma 4.1.

Theorem 4.2 The long run average cost per unit time for a multistate degenerative
system under the bivariate replacement policy (7', V) under partial product process

for the model outlined in section 3 under the Al through A8 is provided by.

(NZ_I %Fi(ﬂ) ¢ </OTFN(U)CZU> P+ R+ cpr

¢(T,N) = ~=L 2 — (13)
S Fx(wydu+ " -2 F(T) + 7
i=1 70

4.1.3 Deductions

The long-run average cost € (T, N) is a bivariate function in T and N. Obviously,
when N is fixed, € (T, N) is a function of T. For fixed N=m, it can be written as

G(T,N) = Cn(T),m=1,2,- -

Thus, for a fixed m, we can find 7}, by analytical or numerical methods such that

6n(T}) is minimised.  That is, when N = 1,2,--- m,---, we can find
17,15, T e, respectively, such that the corresponding,
CL(TY), Co(T5), -+, Cp(T), - - -, are minimised. Because the total lifetime of a

J[DJ ournal of Computational Mathematica Page 12 of



2456-8686, x(i), 2026:001-024
https://doi.org/10.26524 /cm223

multistate degenerative system is limited, the minimum of the long-run average cost
per unit time exists. so, we can determine the minimum of the long-run average
cost per unit time based on C(17), Co(T5), -+, Crn (1)), - - - . Then, if the is denoted
by €, (7)), we obtain the bivariate optimal replacement policy (7, N)* such that

C((T,N)")

min C,,(1}))
min[mTin ¢ (T,N)|

% (o0, N)
C(N™)

IA

The optimal policy (7', N)* is better than the optimal policy Nx. moreover, under
some mild conditions the optimal replacement policy N* is better than the optimal
policy T*. So under the same conditions, an optimal policy (7, N)* is better than
the optimal replacement policies N* and T™.

4.2 The Bivariate Policy (U, N)

Here, we define and examine a bivariate replacement policy (U, N) with partial
product process for the multistate degenerative system, where the system is replaced
when the system is at N-th failure or the overall time to repair is exceeds U, whichever
comes first. The problem is to select an optimal replacement policy (U, N)* so that

the long-run average cost per unit time is minimised.

4.2.1 The length of a cycle and its mean

The length of a cycle W under the bivariate replacement policy (U, N) with partial
product process is

W = <iX¢+U> X(My > U) + (ZX1+

N—
1=1 =1

1
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Where the number of failures before the overall repair time above U is denoted by
n=1,2,---,N— 1and x(.) denotes the indicator function.

1 : if the event A occurs
X(A) = -
0 : if the event A does not occur.

Lemma 4.3 The mean length of the cycle under policy the (U,N) is

U_ A N—-1 A
E(W) = / GN(U)CZU—FwGN(U)—I—Z?Gi_l(U)—FT (14)
0 Qg i=1 Qg
Proof:
n N N-1
E(w) = [(ZXi +U) Xx(My >U)| +E <ZXZ-+ Z}g) x(My < U)
i=1 i=1 i=1
+E(Z)
n
= kK ZXiX(MN>U) + ElUy(umy>0)]
i=1

N N-1
+E{E (ZX#Z)@) X(My <U) | My =u
=1 =1

N U
- E (Z XZ-) Elx(My < U) +/ udG y ()

N-1

+ Z E(X)Ex(Mi-y <U < My)| +UE[x(My > U)| + 7

} +E(2)

U N N—-1
A
i=1 0 i=1
+UEN(U) +7
U N A N-1 \
- / udGiy(u) + 3 A= G (U) + 3~ (G (U) — G (U)]
0 i—1 20 i—1 @0
+UGN(U) + 7,

this provides equation (14) when simplified.
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4.2.2 The long-run average cost under policy (U, N)

The long-run average cost under policy (U, N) let take U; as the first replacement
time. From this, we can derive U,(n > 2) as time taken between (n — 1)-st and
n-th replacement. The sequence U,, n = 1,2,--- forms a renewal process. The
inter-arrival time between two consecutive replacement is known as a renewal cycle.
The long-run average cost per unit time under the multistate bivariate replacement
policy (U, N) with partial product process is

the expected cost incurred in a cycle

%(U,N) =

the expected length of a cycle

E cU—riXi) X(MN>U)}+CPE(Z)

+E{<CZ_§Q—7‘2X¢> X(MNSU)}JrR

EW)

After simplifying, we assume to the following result using lemma 4.2.

Theorem 4.4 The long run average cost per unit time for a multistate degenerative
system under the bivariate replacement policy (U,N) with partial product process for
the model outlined in section 3 under the A1 through A8 is provided by.

N-1

g A A
(/ GN(u)du> c— (WGN(U)—F E ?Gi_1> r+ R+ c,T

€ (T,N) = 0

N1 (15)
A —~ A v_
WGN(U) + Z FGi_l + / GN(u)du +T7

i=1 0 0

0

4.2.3 Deductions

The long-run average cost € (U, N) is a bivariate function in U and N. Obviously,
when N is fixed, € (U, N) is a function of U. For fixed N=m, it can be written as

C(U,N)=Cn(U),m=1,2,---
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Thus, for a fixed m, we can find U}, by analytical or numerical methods such that

%n(Ur) is minimised.  That is, when N = 1,2/--- m,---, we can find
unus,---0r, -+, respectively, such that the corresponding,
C1(UT),Co(Us), -+ ,Cp(US), -+ -, are minimised. Because the total lifetime of a

multistate degenerative system is limited, the minimum of the long-run average cost
per unit time exists. so, we can determine the minimum of the long-run average cost
per unit time based on Cy(Uy), Co(Us3), -+, Crp(US), - - - .Then, if the is denoted by
6n(U}), we obtain the bivariate optimal replacement policy (U, N)* such that

C((U,N)")

I VAN | .
2 X FiE
= B
ER e
-
==
S o

The optimal policy (U, N)* is better than the optimal policy Nx. moreover, under
some mild conditions the optimal replacement policy N* is better than the optimal
policy U*. So under the same conditions, an optimal policy (U, N)* is better than

the optimal replacement policies N* and U*.
4.3 The Bivariate Policy (7, N)

It is a policy where the multistate degenerative system, where system replaced at
the initial failure point upon cumulative operating time exceeding T or at occurrence
of the N-th failure, which ever comes first, The method of replacement at the first
failure point one the total operating time is greater than a given value is employed
in Muth (1977).

4.3.1 The length of a cycle and its mean

The length of a cycle W under the bivariate replacement policy (T, N) with partial
product process is

n n N N-1
W = (ZXi +ZYH> x(Ly > T) + (ZXi + Zm) x(Ly <T)+ Z,
=1 =1 =1 =1

Where the number of failures before the overall repair time above T is denoted by
n=12,---,N—1.
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P(T]:j) = P(XlgT,XQST,"',anlgT,Xn>T);j:1,2,"'
= F(T)F'"YT).

since 7 is a random variable,

E(n-1) = Z(j—l)P(nzﬁ
= F(T)) (j—1)F(T)
)
- F(D)

= X Sl BT + bR T ST ()~ P
—I—/TudFN(u)+T (16)

Proof: Examine

(Z X; + i 1@-) X(Ly <T)
+E(Z)

N N-1
(ZXNL YZ> (Ly <T)| Ly =u

i=1 i=1

+ LK

(i: X + zn:yi—1> X(Ly >T)

=1 =1

( s Y%l) x(Ly >T)
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TN

T -1
:/udFN(u)+/ > E(Y;)dFy(u +Z 7 P(L; <T < Ly)
° o =1

N-—1
+Y E(X;|n=N-1)P(L; <T < Ly)
=1

N-1

£ BB ST < L)) +7

= [ wrs(+ X @)+ RS ) - ()
N-1 [
+ Y S IR(T) - Fe(T) + 7

This provides equation (16) when simplified.

4.3.2 The long-run average cost under policy (T, N)

The long-run average cost per unit time under the multistate bivariate replacement
policy (T, N) under partial product process is

the expected cost incurred in a cycle

€(TT,N) =
(T, ) the expected length of a cycle

{( ZY—TZX) LN>T)}+CPE(Z)
{(CNZIK—TZXl> LN<T)}—|—R

E(W)

=z

After simplifying, we assume to the following result using lemma 4.3.
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Theorem 4.6 The long run average cost per unit time for a multistate degenerative
system under the bivariate replacement policy (7", N) with partial product process
for the model outlined in section 3 under the Al through A8 is provided by.

(Z (1= D)y (T) + bE(T)]) c

(17)
The process used to determine the optimal policy (7', N)* is also employed to obtain
the bivariate optimal replacement policy (T, N)* with partial product process.

4.4 The Bivariate Policy (U™, N)

Under policy (U™, N) states that the multistate degenerative system will be
replaced at the failure point either upon the occurrence of the N-th failure, whichever

comes first, or just before the total repair time exceeds U.

4.4.1 Virtual Repair Times

In the policy (U™, N), an optimal policy might exist such that the system has to be
replaced in the mid of a repair time. The question naturally arises whether it would
not have been more beneficial to replace the system at the failure point itself as we
might have saved on the repair cost. If fact, Stadje and Zuckerman (1992) have
proved for their policy U that if Y;’s are new better then used in expectation, then
there does exist an optimal replacement policy which does not replace in the middle
of a repair period. Because since no additional cost is involved for replacing at
failure in our policies, the strategy of not replacing system components in the

middle of the operating cycle is economical.
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4.4.2 The length of a cycle and its mean

The length of a cycle W under the bivariate replacement policy (U, N) with partial
product process is

(ZX+ZY> (My > U) + (ZX+ZY) (My <U)+ Z,

where the number of failures before the overall repair time above U is denotes by
n=12---,N —1. and the number of repairs before the overall repair time above
U is denoted by v =0,1,2,--- , N — 1.

ItM<U< Mg fore=1,2,--- /N —1, then U — M; will be the virtual repair
time.

Lemma 4.7 The mean length of the cycle under policy (U~, N) is

U N-1 N-1
BV) = [ wiGytn)+ ZE S A G) ~ Ga 0] + 3 s Goa(D)
+a2i_1GN(U)+T (18)

Proof. Consider

+E

i=1 =1

E(W) = [(ZX +ZY> (My > U)

—i—E(Z)7

U
= / udG y (u +Z 2N1 U)+E
0

(ZXZ« + Zn) X(My < U)

i=1

n
> Xz‘x(MN>U>]
E Z YiX(MN>U)

=0

+ E(Z2)
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- / ' udGy(u) + ) #GN(U) + > E(X;)P[M;— < U < My]

as desired and this completes the proof. |

4.4.3 The long-run average cost under the policy (U~,N)

The long-run average cost per unit time under the multistate bivariate replacement
policy (U~, N) with partial product process.

the expected cost incurred in a cycle

- N =
“(U,N) the expected length of a cycle

E{(ciYi —Tin) X(My > U)} + c,E(Z)
+E{<CN2_:1Y,~—T§:XZ-> X(My < U)} + R

i=1 i=1

EW)

After simplifying, we assume to the following result using lamma 4.4.
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Theorem 4.8 The long run average cost per unit time for a multistate degenerative
system under the bivariate replacement policy (U™, N) with partial product process
for the model outlined in section 3 under the Al through A8 is provided by.

N—-1 )\ =t
(). =G () + =5 1GN(U)> r+c¢,7+R
CU,N) = ==L - - (19)
2)2‘,1G1_1(U)+ zi 1GN(U)+/ udGy(u)
=1 20 N 0 0
+§EZ; > ﬁg’f_l Gi(U) = Gy (U)) + 7

5 Conclusion

By considering a repairable system for a monotone process model of a
multi component multistate degenerative system, explicit expressions for the
long-run average cost per unit time under a bivariate replacement policies
(T,N),(U,N),(T*,N) and (U~, N) with partial product process have been derived.
Existence of optimal value of has been deduced. Numerical examples for some of
the aforesaid bivariate replacement policies are given to illustrate the models and
methodology developed in this paper.
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